10-minute plasma treatment improves organic memory performance

October 19, 2010

In its current early stage of development, digital memory circuits that use organic elements instead of silicon or other inorganic materials have a seemingly endless list of variables and options to consider, test, and optimize. While organic electronics are immediately attractive for their potential for extremely low cost and flexible substrates, many design aspects that are now taken for granted in the mature silicon-circuit world must be examined anew from the ground up.

A group led by Takhee Lee from Korea's Gwangju Institute of Science and Technology has demonstrated an optimal combination of materials and processing for a resistive memory circuit design. With a specific composite polymer located between two aluminum contacts as their on-off memory element, the scientists showed that exposing the contacts to an oxygen plasma for a mere 10 minutes prior to constructing the memory cell improved the ratio of on-to-off signal more than 10-fold, to more than 10,000. A larger ratio enables higher circuit performance.

"This simple plasma treatment is very cost-effective compared with alternatives, and improved the operation enough to enable high-performance , " said Byungjin Cho, lead author of the technical report that appeared in August 16 edition of Applied Physics Letters, which is published by the American Institute of Physics. In addition to the on/off ratio, Cho added that other qualities such as switching speed and endurance, data retention and environmental durability must also be investigated and improved before chips would become practical. Different organic materials may also require their own solutions as well, he added.

Explore further: Breakthrough Ultra-High-Speed Memory Technology That Solves Scaling Pace Limit in Embedded Memory Design

More information: The article, "Electrical characterization of organic resistive memory with interfacial oxide layers formed by O2 plasma treatment" by Byungjin Cho, Sunghoon Song, Yongsung Ji and Takhee Lee is published in the journal Applied Physics Letters. See: link.aip.org/link/applab/v97/i6/p063305/s1

Related Stories

Organic flash memory developed

December 17, 2009

(PhysOrg.com) -- Researchers at the University of Tokyo have developed a non-volatile memory that has the same basic structure as a flash memory but is made from cheap, flexible, organic materials.

Buried silver nanoparticles improve organic transistors

August 10, 2010

Out of sight is not out of mind for a group of Hong Kong researchers who have demonstrated that burying a layer of silver nanoparticles improves the performance of their organic electronic devices without requiring complex ...

Hong Kong researchers break new ground in nanotechnology

August 30, 2010

A pioneering study by researchers of The Hong Kong Polytechnic University (PolyU) has shown that sandwiching a simple layer of silver nanoparticles can significantly improve the performance of organic transistors which are ...

Recommended for you

Test racetrack dipole magnet produces record 16 tesla field

November 30, 2015

A new world record has been broken by the CERN magnet group when their racetrack test magnet produced a 16.2 tesla (16.2T) peak field – nearly twice that produced by the current LHC dipoles and the highest ever for a dipole ...

Turbulence in bacterial cultures

November 30, 2015

Turbulent flows surround us, from complex cloud formations to rapidly flowing rivers. Populations of motile bacteria in liquid media can also exhibit patterns of collective motion that resemble turbulent flows, provided the ...

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.