Microscopic solutions to world's biggest problems

Oct 12, 2010

World class scientist professor Willy Verstraete will explain on Monday how he and his team are using bacteria to produce energy, degrade waste, clean water and kill viruses. Today we are faced with seemingly insurmountable challenges: from climate change to the need for renewable energy sources, the threat of new pandemics and a general demise in environmental quality. The role of microbes in each of these challenges is not well-known but is crucially important.

Many countries now acknowledge the need to obtain their energy supply from renewable sources such as biomass. Prof. Verstraete will explain how his team have developed a new anaerobic digestion reactor which can generate as much electricity as 25 . These reactors use a consortium of methanogenic (methane-producing) to degrade waste and energy crops to produce biogas (a mixture of methane and carbon) which is then converted to electricity using a turbine.

We were reminded of the threat of pandemic infectious disease with the (Influenza A H1N1) of last year. Prof. Verstraete and his team have produced nanosilver particles from silver ions using the 'good bacteria' Lactobacillus. These particles can kill the highly infectious norovirus and could potentially be used as therapy against other viruses such as influenza.

Microbes have long been used for and bioremediation. Prof. Verstraete and his team, through funding by the EU's "LIFE" project, have isolated Desulphitobacterium dichloroeleminans – a bacterium which can be injected into ground water sites to decontaminate them from chlorinated waste such as chlorinated alkanes - the most frequently encountered contaminants in soil and groundwater.

These are just a few of the ways in which microbes can help.

"To fully understand how microbes play a part in solving our environmental problems, we must better explore our microbial resources as they currently exist - in culture collections or at 'evolved' environmental sites. We need to develop key strategies to deal with microbial communities, instead of thinking of them in terms of haphazard assemblages of bacterial species. By 'upgrading' the services of microbial communities through implementing Microbial Resource Management (MRM) and combining these communities with new technology, these environmental challenges can be addressed." said Professor Verstraete.

A pragmatic approach to solving environmental problems will be proposed at this lecture, making use of current developments in molecular methods and potential biotech solutions which are appropriate to the current market economy.

On 11 October 2010, Professor Willy Verstraete will present the third Environmental Microbiology Lecture: "Microbial Resource Management (MRM): the way forward for environmental biotechnology"

Explore further: Top Japan lab dismisses ground-breaking stem cell study

add to favorites email to friend print save as pdf

Related Stories

Microbial societies do not like oligarchy

Mar 12, 2009

Bacteria and humans tend to live in highly diverse and complex communities. Most interestingly, bacteria and humans appear to prefer to live in a democracy. This is the basic message of the paper entitled "Initial community ...

Microbes turn electricity directly to methane

Mar 30, 2009

(PhysOrg.com) -- A tiny microbe can take electricity and directly convert carbon dioxide and water to methane, producing a portable energy source with a potentially neutral carbon footprint, according to a ...

Biofuel cell retrieves copper

Jun 10, 2010

(PhysOrg.com) -- Producing energy and recovering copper from waste water at the same time: this is what Wageningen University environmental technologists are doing with their new microbial fuel cell.

Paired microbes eliminate methane using sulfur pathway

Jan 17, 2008

Anaerobic microbes in the Earth's oceans consume 90 percent of the methane produced by methane hydrates – methane trapped in ice – preventing large amounts of methane from reaching the atmosphere. Researchers now have ...

Methane from microbes: a fuel for the future

Dec 10, 2007

Microbes could provide a clean, renewable energy source and use up carbon dioxide in the process, suggested Dr James Chong at a Science Media Centre press briefing today.

Recommended for you

Top Japan lab dismisses ground-breaking stem cell study

Dec 26, 2014

Japan's top research institute on Friday hammered the final nail in the coffin of what was once billed as a ground-breaking stem cell study, dismissing it as flawed and saying the work could have been fabricated.

Research sheds light on what causes cells to divide

Dec 24, 2014

When a rapidly-growing cell divides into two smaller cells, what triggers the split? Is it the size the growing cell eventually reaches? Or is the real trigger the time period over which the cell keeps growing ...

Locking mechanism found for 'scissors' that cut DNA

Dec 24, 2014

Researchers at Johns Hopkins have discovered what keeps an enzyme from becoming overzealous in its clipping of DNA. Since controlled clipping is required for the production of specialized immune system proteins, ...

Scrapie could breach the species barrier

Dec 24, 2014

INRA scientists have shown for the first time that the pathogens responsible for scrapie in small ruminants (prions) have the potential to convert the human prion protein from a healthy state to a pathological ...

Extracting bioactive compounds from marine microalgae

Dec 24, 2014

Microalgae can produce high value health compounds like omega-3s , traditionally sourced from fish. With declining fish stocks, an alternative source is imperative. Published in the Pertanika Journal of Tr ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.