Study links immune protein to abnormal brain development

Oct 14, 2010

UCLA scientists have discovered that exposing fetal neurons to higher than normal levels of a common immune protein leads to abnormal brain development in mice.

Published Oct. 14 in the online , the finding may provide new insights into factors contributing to human neurological disorders like schizophrenia and autism.

The researchers studied a protein called major histocompatibility complex, or MHC. The protein plays a dual role in the body: It helps the immune system to identify infected cells, and it enables neurons to make the right connections with each other in the brain.

"When neurons sense infection or damage to the brain, they produce more MHC," said Daniel Kaufman, professor of molecular and medical pharmacology at the David Geffen School of Medicine at UCLA. "We wanted to explore whether higher levels of MHC affect how the brain develops."

Kaufman and his colleagues studied the development of mice whose neurons were genetically engineered to produce more MHC than normal.

Focusing on two key regions of the brain, the researchers looked at neurons that process vision and neurons involved in learning and memory. Next, the team compared these cells with their counterparts in normal mice.

What the scientists saw confirmed their hunch.

"The mice whose neurons produced extra MHC showed subtle changes in the connections between those neurons and other neurons in both ," Kaufman said.

The UCLA finding could be of relevance in unraveling the origins of schizophrenia and autism, he noted.

"Infections in pregnant women have been associated with slightly higher risks for schizophrenia and autism in their children," he said. "Subtle changes in due to excess MHC may explain this relationship."

Kaufman noted that female mice that contract infections during pregnancy also often give birth to offspring with similar to autism and schizophrenia.

"We suspect that infection stimulates the mother's immune system to produce molecules that act like distress signals — they circulate through her blood and then enter the developing brain of the fetus," he said. "There, they alert to make more MHC, which our study shows can lead to altered neuronal circuitry."

"This finding gives us greater insight into the role that MHC plays in the nervous system and may enhance our understanding of the factors that can contribute to neuropsychiatric disorders like autism and schizophrenia," Kaufman said.

Explore further: Isolation of important centres in the brain results in age-related memory deficits

add to favorites email to friend print save as pdf

Related Stories

Molecular 'foreman' discovered for brain wiring

Nov 21, 2007

Researchers have identified a master regulatory molecule that is responsible for triggering the remodeling of neuronal connections that is critical for learning. Malfunctioning of the connection-remodeling machinery that ...

Stem cells are good for the brain

Jul 15, 2008

For some years, scientists have been speculating over why stem cells exist in the brain, as brain regeneration is limited. A German team of neuroscientists believe these stem cells help keep the brain healthy and active.

New brain cells listen before they talk

Oct 30, 2007

Newly created neurons in adults rely on signals from distant brain regions to regulate their maturation and survival before they can communicate with existing neighboring cells—a finding that has important implications ...

Novel Pathway Regulates Timing of Brain-Cell Development

Oct 05, 2006

Brain formation involves the carefully timed production of different types of nerve cells by neural stem cells: neurons are produced first, then astrocytes. Making too much of one kind of cell and too little of another at ...

Recommended for you

New research supporting stroke rehabilitation

21 hours ago

Using world-leading research methods, the team of Dr David Wright and Prof Paul Holmes, working with Dr Jacqueline Williams from the Victoria University in Melbourne, studied activity in an area of the brain ...

Team finds an off switch for pain

Nov 26, 2014

In research published in the medical journal Brain, Saint Louis University researcher Daniela Salvemini, Ph.D. and colleagues within SLU, the National Institutes of Health (NIH) and other academic institutions have d ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.