Researchers generate iPSCs to further treatments for lung disease

October 28, 2010

(Boston) A team of researchers from Boston University's Center for Regenerative Medicine and the Pulmonary Center have generated 100 new lines of human induced pluripotent stem cells (iPSC) from individuals with lung diseases, including cystic fibrosis and emphysema. The new stem cell lines could possibly lead to new treatments for these debilitating diseases. The findings, which appear in the current issue of Stem Cells, demonstrate the first time lung disease-specific iPSC have been created in a lab.

iPSCs are derived by reprogramming adult cells into a primitive stem cell state. This process results in the creation of cells that are similar to in terms of their capability to differentiate into different types of cells, including endoderm cells that can give rise to liver and lung tissue.

"iPSCs solve many major hurdles currently impacting embryonic stem cell research," said Darrell Kotton, the study's lead author and associate professor of medicine and pathology and laboratory medicine at Boston University's School of Medicine (BUSM). iPSCs do not require embryos, and the process used to cultivate iPSCs is easier than the techniques used to obtain embryonic stem cells. iPSCs are genetically identical to the patient's cells and potentially can be transplanted back without rejection.

"In a laboratory dish, these cells have the ability to multiply indefinitely so that researchers have more time to investigate the diseased cell and correct its genes," said Kotton.

The study involved patients with different forms of lung disease – , alpha-1 antitrypsin deficiency-related emphysema, scleroderma (SSc) and sickle cell disease. The patients underwent skin biopsies and donated tissue samples, which the research team used to cultivate adult stem cells. Using a Boston University-patented vector in the form of a virus, named the Stem Cell Cassette (STEMCCA), the researchers were able to reprogram the skin cells into the primitive pluripotent stem cells known as iPSCs.

"The STEMCCA vector is proving invaluable for reprogramming cells from a variety of species, and this is the first report of the 'humanized' version of our vector for use in reprogramming human cells," said Gustavo Mostoslavsky, a co-author of the study and assistant professor of medicine at BUSM. Together Kotton and Mostoslavsky co-direct the new Boston University Center for Regenerative Medicine (CReM).

To test the differentiation power of the iPSCs, the team showed that the stem cells multiplied and could be differentiated into endoderm tissue, the natural precursor cells of the lung, the primary organ destroyed by the diseases cystic fibrosis and emphysema.

"We hope to build a bank of that could be used to help treat the two most common forms of inherited , cystic fibrosis and alpha-1 antitrypsin deficiency," said Kotton.

The next step, he said, is to correct the genetic mutations responsible for causing cystic fibrosis, emphysema and other lung diseases.

Explore further: Researchers develop human stem cell line containing sickle cell anemia mutation

Related Stories

How Useful Are Adult Stem Cells, Really?

April 26, 2010

(PhysOrg.com) -- With the debate (especially in the U.S.) raging over ethics of using embryonic stem cells in research to cure diseases like ALS, Parkinsons, Type 1 diabetes and even spinal cord injuries, the breakthrough ...

New type of human stem cell may be more easy to manipulate

June 8, 2010

Researchers from the Massachusetts General Hospital Center for Regenerative Medicine (MGH-CRM) and the Harvard Stem Cell Institute have a developed a new type of human pluripotent stem cell that can be manipulated more readily ...

Recommended for you

Genomes uncover life's early history

August 24, 2015

A University of Manchester scientist is part of a team which has carried out one of the biggest ever analyses of genomes on life of all forms.

Rare nautilus sighted for the first time in three decades

August 25, 2015

In early August, biologist Peter Ward returned from the South Pacific with news that he encountered an old friend, one he hadn't seen in over three decades. The University of Washington professor had seen what he considers ...

Why a mutant rice called Big Grain1 yields such big grains

August 24, 2015

(Phys.org)—Rice is one of the most important staple crops grown by humans—very possibly the most important in history. With 4.3 billion inhabitants, Asia is home to 60 percent of the world's population, so it's unsurprising ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.