Researchers discover origin of immune cells in the brain

Oct 22, 2010

Mount Sinai researchers have discovered that microglia, the immune cells that reside in the brain, have a unique origin and are formed shortly after conception. It was previously thought that microglia originated at the same time as macrophages, which are other immune cells that are thought to develop at birth. This groundbreaking discovery has the potential to lead to future treatments of degenerative brain diseases such as Alzheimer's and autoimmune diseases such as multiple sclerosis. The study is published online October 21 in Science Express.

Microglia are thought to play an important role in the development of many brain diseases, and that defective microglia could lead to the release of inflammatory molecules, which could participate in the development of degenerative brain diseases.

"This really is a startling discovery," said Miriam Merad, MD, PhD, Associate Professor of Gene and Cell Medicine at Mount Sinai School of Medicine and Principal Investigator of the study. "We've shown that the precursor cells develop into microglia only during a short period after conception. Now that we know that microglia originate in early embryos, theoretically we should be able to generate microglia from to treat brain diseases caused by defective microglia. This is a very good example of why scientists need to be able to conduct research with embryonic stem cells."

For the first part of the study, researchers transplanted blood cell precursors, which are precursors for all macrophages, from one newborn mouse to another. The transplanted cells could not be differentiated in the recipient animal. These results suggest that microglia originated prior to birth during embryonic life.

Next, researchers used a that expresses fluorescent biosensors in blood precursors to determine when, during embryonic age, precursors develop into microglia. Once activated the fluorescence does not go away and all cells that develop from the fluorescent precursors should remain fluorescent. The researchers activated the fluorescence as early as seven days after
conception. When they examined adult mice they found fluorescent microglia but no fluorescent . These results established that microglia are unique in that they originate from precursors that arise around seven days after conception.

"Moving forward we need to further study the normal development of precursor blood cells into microglia, which should help identify the role of microglia in various brain diseases and ultimately lead to advances in treatments," said Dr. Merad.

Explore further: Goat to be cloned to treat rare genetic disorder

Provided by The Mount Sinai Hospital

3.9 /5 (8 votes)

Related Stories

How does microglia examine damaged synapses?

Mar 31, 2009

Microglia, immune cells in the brain, is suggested to be involved in the repair of damaged brain, like a medical doctor. However, it is completely unknown how microglia diagnoses damaged circuits in an in vivo brain. Japanese ...

Blocking toxic effects could make clot-buster safer

Jan 23, 2009

Since the introduction of the life-saving clot-busting drug tPA more than a decade ago, evidence has been accumulating that tPA (tissue-type plasminogen activator) can be a double-edged sword for a brain affected by stroke. ...

Researchers identify a cell type that limits stroke damage

Jan 27, 2009

A research team including Serge Rivest of University Laval's Faculty of Medicine has demonstrated the existence of a type of cells that limits brain damage after a stroke. The study was recently published in the online version ...

Recommended for you

Researchers transplant regenerated oesophagus

20 hours ago

Tissue engineering has been used to construct natural oesophagi, which in combination with bone marrow stem cells have been safely and effectively transplanted in rats. The study, published in Nature Communications, shows ...

User comments : 0

More news stories

What are the chances that your dad isn't your dad?

How confident are you that the man you call dad is really your biological father? If you believe some of the most commonly-quoted figures, you could be forgiven for not being very confident at all. But how ...

Making 'bucky-balls' in spin-out's sights

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

Gene removal could have implications beyond plant science

(Phys.org) —For thousands of years humans have been tinkering with plant genetics, even when they didn't realize that is what they were doing, in an effort to make stronger, healthier crops that endured climates better, ...