Images shed new light on inflammation (w/ Video)

Oct 15, 2010

Researchers at the University of Calgary Faculty of Medicine are using an innovative new imaging technique to study how white blood cells (called neutrophils) respond to inflammation, and have revealed new targets to inhibit the response.

When the body is invaded by infection, the immune system counters by generating inflammation with deployment of white blood cells to the site of danger to kill invading bacteria. However, inappropriate inflammation occurs in the absence of infection when tissues are damaged, and this inappropriate response contributes to diseases such as heart attacks and stroke. Researchers used both experimental animal models and human white blood cells to discover that damaged tissue can release signals that attract white blood cells, and blocking these signal can prevent inappropriate inflammation.

The findings are published in the October 15th edition of Science.

"We have known how white blood cells find their way to sites of infection for many years, but understanding how, or even why white blood cells go to sites of sterile non-infectious has been a real dilemma," says Dr. Paul Kubes, PhD, senior author of the study as well as Director of the Snyder Institute of Infection, Immunity and Inflammation. "Recognizing that damaged cells release "bacteria-like" signals that attract white blood cells and cause inflammation might allow for the development of a whole new class of therapeutics to combat ."

This video is not supported by your browser at this time.
Video: white blood cells responding to an area of tissue damage

Another remarkable aspect of the research is that scientists were able to take unprecedented real-time videos of the activity at sites of inflammation. The University of Calgary is one of very few centers in the world using this imaging technology, called spinning disk confocal intravial , to study the .

"These powerful imaging systems allow us to tackle complicated problems by directly observing the activity of the immune system in the body. Our laboratory is perhaps the only in Canada, and amongst a select few in the world that have this technology, so it is truly a privilege to contribute to this research," says Braedon McDonald, the lead author of the study and PhD candidate.

This video is not supported by your browser at this time.
White blood cells, called neutrophils (green) migrating through blood vessels (blue) towards an area of tissue damage in the liver (red).

This video is not supported by your browser at this time.
3D rendering of the injured liver showing white blood cells, called neutrophils (green) within blood vessels (blue) enroute to damaged tissue (red).


Explore further: The impact of bacteria in our guts

Related Stories

Stress may make you itch

Oct 27, 2008

Current research suggests that stress may activate immune cells in your skin, resulting in inflammatory skin disease. The related report by Joachim et al., "Stress-induced Neurogenic Inflammation in Murine Skin Skews Dendritic ...

Researchers discover internal compass of immune cell

Dec 14, 2006

Researchers at the University of California, San Diego (UCSD) School of Medicine have discovered how neutrophils – specialized white blood cells that play key roles in inflammation and in the body's immune ...

Blocking toxic effects could make clot-buster safer

Jan 23, 2009

Since the introduction of the life-saving clot-busting drug tPA more than a decade ago, evidence has been accumulating that tPA (tissue-type plasminogen activator) can be a double-edged sword for a brain affected by stroke. ...

Recommended for you

The impact of bacteria in our guts

22 hours ago

The word metabolism gets tossed around a lot, but it means much more than whether you can go back to the buffet for seconds without worrying about your waistline. In fact, metabolism is the set of biochemical ...

Stem cell therapies hold promise, but obstacles remain

22 hours ago

(Medical Xpress)—In an article appearing online today in the journal Science, a group of researchers, including University of Rochester neurologist Steve Goldman, M.D., Ph.D., review the potential and ch ...

New hope in fight against muscular dystrophy

23 hours ago

Research at Stockholm's KTH Royal Institute of Technology offers hope to those who suffer from Duchenne muscular dystrophy, an incurable, debilitating disease that cuts young lives short.

Biologists reprogram skin cells to mimic rare disease

Aug 21, 2014

Johns Hopkins stem cell biologists have found a way to reprogram a patient's skin cells into cells that mimic and display many biological features of a rare genetic disorder called familial dysautonomia. ...

User comments : 0