Image of mosquito's heart wins first place in Nikon's 'Small World' photomicrography competition

October 15, 2010
The award-winning image uses fluorescent dyes to show the structure of the mosquito’s heart magnified 100 times. The green dye binds with muscle cells and shows the underlying musculature. The blue dye binds with cellular DNA and shows the presence of all the mosquito’s cells. The point of view of the image is top down. The mosquito’s body lies horizontally with its head to the left. The heart is the narrow tube that runs horizontally across the middle of the picture. The muscles that wind around the heart show up clearly in green. The triangular-shaped bundles perpendicular to the heart are called alary muscles and they hold the heart up against the mosquito’s back. Each of these bundles is centered on one of the heart valves, which do not show up clearly. The mosquito’s body consists of a series of segments and the broad strips of muscle that run parallel to the heart are “intersegmental” muscles that hold the segments together. The vertical muscles at the top and bottom of the image wrap around the mosquito’s body and are called “intrasegmental” muscles. Credit: Jonas King, Hillyer Lab, Vanderbilt University

A fluorescent image of the heart of a mosquito taken by a Vanderbilt graduate student has captured first place in Nikon's "Small World" 2010 photomicrography competition.

Jonas King took the image that shows a section of the tube-like mosquito magnified 100 times. He is a member of the research group of Julián Hillyer, assistant professor of biological sciences, and the image was taken as part of their research on the circulatory system of Anopheles gambiae, a mosquito that spreads malaria.

According to Nikon, 2,200 were submitted—the largest number in the 36-year history of the competition—and King's image was judged the winner for its combination of aesthetic beauty, scientific relevance and the technical difficulty involved in capturing it.

"Surprisingly little is known about the mosquito's circulatory system despite the key role that it plays in spreading the malaria parasite," Hillyer said. "Because of the importance of this system, we expect better understanding of its biology will contribute to the development of novel pest and disease control strategies."

The mosquito's heart and circulatory system is dramatically different from that of mammals and humans. A long tube extends from the insect's head to tail and is hung just under the cuticle shell that forms the mosquito's back. The heart makes up the rear two-thirds of the tube and consists of a series of valves within the tube and helical coils of muscle that surround the tube. These muscles cause the tube to expand and contract, producing a worm-like peristaltic pumping action.

Most of the time, the heart pumps the mosquito's blood—a clear liquid called hemolyph—toward the mosquito's head, but occasionally it reverses direction. The mosquito doesn't have arteries and veins like mammals. Instead, the blood flows from the heart into the abdominal cavity and eventually cycles back through the heart. "The mosquito's heart works something like the pump in a garden fountain," Hillyer said.

To show the structure of the mosquito heart, King used two types of fluorescent dyes, The green dye binds with muscle cells and shows the underlying musculature. The blue dye binds with cellular DNA and shows the presence of all the mosquito's cells. The point of view of the image is top down. The mosquito's body lies horizontally with its head to the left. The heart is the narrow tube that runs horizontally across the middle of the picture. The muscles that wind around the heart show up clearly in green. The triangular-shaped bundles perpendicular to the heart are called alary muscles and they hold the heart up against the mosquito's back. Each of these bundles is centered on one of the heart valves, which do not show up clearly. The mosquito's body consists of a series of segments and the broad strips of muscle that run parallel to the heart are "intersegmental" muscles that hold the segments together. The vertical muscles at the top and bottom of the image wrap around the mosquito's body and are called "intrasegmental" muscles.

Explore further: Fruit fly studies help explain human heart

Related Stories

Fruit fly studies help explain human heart

December 20, 2005

Researchers at The Burnham Institute for Medical Research in San Diego have obtained detailed insights into the early formation of the human heart.

Why is the heart heart-shaped?

February 20, 2007

How does the heart attain its characteristic shape? Shape may be sculpted by cell movement, cell division, or changes in cell size and shape, all of which can be influenced by the local environment. The heart appears as ...

Barrier in mosquito midgut protects invading pathogens

March 11, 2010

Scientists studying the Anopheles gambiae mosquito - the main vector of malaria - have found that when the mosquito takes a blood meal, that act triggers two enzymes to form a network of crisscrossing proteins around the ...

Recommended for you

Fossil specimen reveals a new species of ancient river dolphin

September 1, 2015

The careful examination of fossil fragments from Panama has led Smithsonian scientists and colleagues to the discovery of a new genus and species of river dolphin that has been long extinct. The team named it Isthminia panamensis. ...

Early human diet explains our eating habits

August 31, 2015

Much attention is being given to what people ate in the distant past as a guide to what we should eat today. Advocates of the claimed palaeodiet recommend that we should avoid carbohydrates and load our plates with red meat ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

SB325
not rated yet Oct 15, 2010
Good work! What's next with the photomicrography and staining techniques?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.