Genetic blueprint of bacteria causing Lyme disease unraveled

Oct 14, 2010

Benjamin Luft, M.D., Professor of Medicine, Stony Brook University Medical Center, and a team of medical researchers have determined the genetic blueprint of 13 strains of the bacteria that cause Lyme disease. The finding is crucial to advancing research on Lyme disease, the most frequent tick-borne infection in North America and Europe, and may lead to better diagnostics and a vaccine. Dr. Luft presented the research results at an October 11 meeting in Washington, D.C., at the Institute of Medicine, an arm of the National Academy of Sciences. The study is reported in the early online edition of the Journal of Bacteriology.

Borrelia burgdorferi is the causative agent of . The first complete of one strain of B. burgdorferi more than 10 years ago has helped researchers understand the pathogenesis of the disease. However, this understanding was limited with only a single genome sequence on one strain completed. By determining all genome sequences of B. burgdorferi, the researchers are providing a foundation for novel detection of Lyme disease, diagnostic approaches and prevention strategies. The timing is critical, as disease occurrence has become widespread over the past decade throughout the United States and part of Europe.

“By characterizing every gene in the Lyme disease agents family, we have a blueprint of every possible characteristic of the organism,” says Dr. Luft, senior author on the study. “This is the building block to developing more accurate and effective diagnostic tests, therapeutic agents and vaccines.

“We are depositing the millions of nucleotides that we have sequenced in the public database so that this valuable information will help to further enhance our research and that of other Lyme disease investigators.”

Dr. Luft and colleagues point out in the study that improved diagnostics are needed because the best clinical sign of Lyme disease, the erythema migrans skin rash, does not always occur in patients. In addition, diagnostic assays and vaccines developed before their blueprint of the entire genome of B. burdorferi have had less than satisfactory results.

“A driving force for doing this project was the observation that certain forms of the can be more invasive than others,” adds Dr. Steven E. Schutzer, lead author, and Professor of Medicine, University of Medicine and Dentistry of New Jersey. “We wanted to find out why and how to identify this property.”

Explore further: Reading a biological clock in the dark

add to favorites email to friend print save as pdf

Related Stories

Researchers to study lyme-like illness in Texas

Aug 15, 2008

Tao Lin, D.V.M., and Steven J. Norris, Ph.D., both with the Department of Pathology and Laboratory Medicine at The University of Texas Medical School at Houston, have been named grant recipients of the Norman Hackerman Advanced ...

Scientists identify potential key to Lyme disease

Feb 09, 2009

Researchers at UT Southwestern Medical Center have identified a protein that may help give Lyme disease its bite. The findings suggest that the bacterial protein, which aids in transporting the metal manganese, is essential ...

Recommended for you

Crowdsourced power to solve microbe mysteries

2 hours ago

University of New South Wales scientists hope to unlock the secrets of millions of marine microbes from waters as far apart as Sydney's Botany Bay and the Amazon River in Brazil, with the help of an international ...

Reading a biological clock in the dark

23 hours ago

Our species' waking and sleeping cycles – shaped in millions of years of evolution – have been turned upside down within a single century with the advent of electric lighting and airplanes. As a result, ...

User comments : 0