A forest of nanorods: Amazing nanostructures created by glancing-angle deposition

October 20, 2010

Just as landscape photographs shot in low-angle light dramatically accentuate subtle swales and mounds, depositing metal vapors at glancing angles turns a rough surface into amazing nanostructures with a vast range of potential properties.

For decades, has been a standard technique for creating modern microelectronic circuits. But nearly all of industry's efforts have been devoted to making structures as flat and smooth as possible. Rather than placing metal sources in the high-noon position used to make featureless structures, Daniel Gall of Rensselaer Polytechnic Institute is one of several dozen research leaders who place them at very narrow angles akin to sunrise or sunset illumination. Metal atoms then hit primarily any high spots on the target surface. Continued deposition creates a forest of nanorods, rather than flat films, since each growing rod shadows a volume behind it. Starting with a patterned substrate yields a regular array of nanoscale columns, like skyscrapers in downtown Manhattan.

Gall describes his research today at the AVS 57th International Symposium & Exhibition, which takes place this week at the Albuquerque Convention Center in New Mexico.

In his talk, Gall reveals a new theory that predicts how the deposition temperature and diffusion affects the diameters of the nanorods.

" moving by surface diffusion typically smooth the surface," Gall says. "Atomic shadowing causes the opposite effects, making the rough. Glancing-angle deposition extends shadowing effects to higher temperatures, which lead to larger-diameter ."

He also illustrates his presentation with images of a variety of created in his lab, including curiously shaped half-moons made when he started with a pattern of self-assembled spheres.

Future applications for nanorod structures such as Gall's include nanosensors, optical elements, fuel-cell cathodes and electrical contacts for buffering thermal expansion.

Explore further: Simple method may improve computer memory, catalysts, ceramic/metal seals, and nanodevices

More information: The presentation, "Nanorods by Extreme Shadowing: New Pictures and New Physics" is at 2:40 p.m. on Wednesday, October 20, 2010. ABSTRACT: www.avssymposium.org/Open/SearchPapers.aspx?PaperNumber=SE+TF-WeA-3

Related Stories

Recommended for you

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

Changing the color of light

July 23, 2015

Researchers at the University of Delaware have received a $1 million grant from the W.M. Keck Foundation to explore a new idea that could improve solar cells, medical imaging and even cancer treatments. Simply put, they want ...

Wafer-thin material heralds future of wearable technology

July 27, 2015

UOW's Institute for Superconducting and Electronic Materials (ISEM) has successfully pioneered a way to construct a flexible, foldable and lightweight energy storage device that provides the building blocks for next-generation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.