Exposed rocks point to water on ancient Mars

Oct 14, 2010
Mars digital-image mosaic merged with color of the MC-13 quadrangle, Syrtis Major region of Mars. The central part is dominated by dark dust and lava flows of the Syrtis Major Planitia region. The unique outcrop was located within the central peak of a crater to the southwest of Syrtis Major. Credit: NASA

A new discovery of hydrothermally altered carbonate-bearing rocks on Mars points toward habitable environments deep in the martian crust, a Planetary Science Institute researcher said.

A deposit of carbonate rocks that once existed 6 km (about 4 miles) below the surface of was uplifted and exposed by an ancient meteor impact, said Joseph Michalski, research scientist with PSI. The carbonate minerals exist along with hydrated silicate minerals of a likely hydrothermal origin.

Using data returned from NASA’s Mars Reconnaissance Orbiter (MRO) spacecraft, researchers have spotted this unique mineralogy within the central peak of a crater to the southwest of a giant martian volcanic province named Syrtis Major. With infrared spectra from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), planetary geologists detected the hydrothermal minerals from their spectroscopic fingerprints.

Visible images from the High Resolution Imaging Science Experiment (HiRISE) camera aboard MRO show that the carbonates and hydrated silicate minerals occur within deformed bedrock that was exhumed by an ancient meteor impact that poked through the volcanic upper crust of Mars.

“Carbonate rocks have long been a Holy Grail of Mars exploration for several reasons,” Michalski said. “One reason is because carbonates form with the ocean and within lakes on Earth, so the same could be true for -- such deposits could indicate past seas that were once present on Mars. Another reason is because we suspect that the ancient martian atmosphere was probably denser and CO2-rich, but today the atmosphere is quite thin so we infer that the CO2 must have gone into carbonate rocks somewhere on Mars.”

Michalski and co-author Paul B. Niles of NASA Johnson Space Center recently published the results in a paper titled “Deep crustal carbonate rocks exposed by on Mars” in Nature Geoscience.

While this is not the first detection of carbonates on Mars, Michalski said, “This detection is significant because it shows other carbonates detected by previous workers, which were found in a fairly limited spatial extent, were not a localized phenomenon. Carbonates may have formed over a very large region of ancient Mars, but been covered up by volcanic flows later in the history of the planet. A very exciting history of on Mars may be simply covered up by younger lava!”

The research team used data from the HiRise instrument onboard NASA's Mars Reconnaissance Orbiter, Credit: NASA/JPL-Caltech

The discovery also has implications for the habitability of the martian crust.

“The presence of carbonates along with hydrothermal silicate minerals indicates that a hydrothermal system existed in the presence of CO2 deep in the martian crust,” Michalski says. “Such an environment is chemically similar to the type of hydrothermal systems that exist within the ocean floor of Earth, which are capable of sustaining vast communities of organisms that have never seen the light of day.

“The cold, dry surface of Mars is a tough place to survive, even for microbes. If we can identify places where habitable environments once existed at depth, protected from the harsh surface environment, it is a big step forward for astrobiological exploration of the red planet.”

Explore further: NASA Webb's heart survives deep freeze test

add to favorites email to friend print save as pdf

Related Stories

Device reveals more about Mars' atmosphere

Oct 12, 2010

Instruments designed by a UT Dallas professor to measure atmospheric components on the surface of Mars have uncovered important clues about the planet’s atmosphere and climate history.

Rocky Mesas of Nilosyrtis Mensae, Mars

May 06, 2008

Mesas in the Nilosyrtis Mensae region of Mars appear in enhanced color in this image from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter (MRO).

Evidence of ancient hot springs on Mars detailed

Feb 12, 2009

New Rochelle, NY, February 12, 2009 -Data from the Mars Reconnaissance Orbiter (MRO) suggest the discovery of ancient springs in the Vernal Crater, sites where life forms may have evolved on Mars, according to a report in ...

Recommended for you

NASA Webb's heart survives deep freeze test

9 hours ago

After 116 days of being subjected to extremely frigid temperatures like that in space, the heart of the James Webb Space Telescope, the Integrated Science Instrument Module (ISIM) and its sensitive instruments, ...

Cosmic rays threaten future deep-space astronaut missions

14 hours ago

Crewed missions to Mars remain an essential goal for NASA, but scientists are only now beginning to understand and characterize the radiation hazards that could make such ventures risky, concludes a new paper ...

MAVEN studies passing comet and its effects

16 hours ago

NASA's newest orbiter at Mars, MAVEN, took precautions to avoid harm from a dust-spewing comet that flew near Mars today and is studying the flyby's effects on the Red Planet's atmosphere.

How to safely enjoy the October 23 partial solar eclipse

16 hours ago

2014 – a year rich in eclipses. The Moon dutifully slid into Earth's shadow in April and October gifting us with two total lunars. Now it's the Sun's turn. This Thursday October 23 skywatchers across much ...

How to grip an asteroid

17 hours ago

For someone like Edward Fouad, a junior at Caltech who has always been interested in robotics and mechanical engineering, it was an ideal project: help develop robotic technology that could one day fly on ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

deatopmg
1 / 5 (1) Oct 15, 2010
Water, as standing water, flowing water, wet soil, and small hydrothermal vents are readily found in the highly compressed jpg photos, released to the public, of Mar's surface. I can only imagine what the raw photo's show.
The "cold, dry surface" Never A Straight Answer always talks about is the atmosphere. The soil temperature, at least at lower latitudes, routinely gets as high as 20 deg. C.