Efficient computer network on a chip

October 19, 2010

Satellite TV without having to set up a receiver dish. Digital radio on your mobile phone without your batteries quickly running flat. The advanced calculations needed for these future applications are made possible by a microchip with relatively simple processors that can interact and communicate flexibly. These are among the findings of research at the Centre for Telematics and Information Technology of the University of Twente carried out by Marcel van de Burgwal, who obtained his PhD on 15 October.

Soon it will be possible to receive satellite signals not only with a satellite dish, but also using stationary arrays made up of grids of simple, fixed, almost flat antennae that can fit on the roof of a car, for example. The antennae then no longer need to be carefully aimed: the grid of antennae forms a 'virtual dish'. That is a great advantage, especially for such as satellite TV on the move. The aiming of the virtual dish is actually carried out by the entire grid. It is comparable with the LOFAR project, in which countless simple antennae laid out on the heathland of Drenthe in the north east Netherlands together form a huge dish for radiotelescopy. This too calls for large numbers of calculations and fast communications.

Computing power replaces analogue components

Conventional microprocessors are less suitable for these calculations, because they are highly overdimensioned and use large amounts of energy. The remedy is a combination of smaller, simple processors on a single microchip that can carry out tasks flexibly and be switched off when they are not needed. In this way a complete computer network can be constructed that takes up just a few square millimetres. To achieve this, Van de Burgwal makes use of an efficient infrastructure based on a miniature network, where a TV or is defined by software instead of the classic coils and crystals. "Software-defined radio may seem much more complex, but we can pack so much into the space taken up by, for example, a coil that it more than repays the effort", says Van de Burgwal.

Chameleon

The same type of also turns out to be suitable for a completely different application: reception on a smartphone, where the main criterion is minimizing energy use. In his doctoral thesis Van de Burgwal shows that major gains can also be made here by using new methods of communication between the different processors. The multi-processor chip that he uses is based on the Montium processor - appropriately named after a chameleon - that was developed at the University of Twente. The processor is being further developed and marketed by the spinoff business Recore Systems.

Explore further: Chameleon-Chip Adapts Itself and Stays Cool

Related Stories

Chameleon-Chip Adapts Itself and Stays Cool

September 22, 2004

A microprocessor adapting itself to the actual use and environment. That’s the way to keep the energy consumption of future ‘mobile companions’ within limits and be flexible at the same time. Paul Heysters, who finishes ...

New Software Changes Wireless Technology Functions on Demand

June 24, 2005

Taking wireless technology to the next level, NASA is leading the way in the field of Software Defined Radio, or SDR, a wireless technology that gives an electronic device the ability to quickly and easily perform new functions ...

Multimedia car radio of the future

January 25, 2007

Crackling radio stations, signal loss in tunnels and difficulties tuning to the correct frequency – the conventional car radio has had its day. ESA and its partners are developing the multimedia car radio of the future. ...

Recommended for you

Team develops targeted drug delivery to lung

September 2, 2015

Researchers from Columbia Engineering and Columbia University Medical Center (CUMC) have developed a new method that can target delivery of very small volumes of drugs into the lung. Their approach, in which micro-liters ...

Not another new phone! But Nextbit's Robin is smarter

September 2, 2015

San Francisco-based Nextbit wants you to meet Robin, which they consider as the smarter smartphone. Their premise is that no one is making a smart smartphone; when you get so big it's hard to see the forest through the trees. ...

Team creates functional ultrathin solar cells

August 27, 2015

(Phys.org)—A team of researchers with Johannes Kepler University Linz in Austria has developed an ultrathin solar cell for use in lightweight and flexible applications. In their paper published in the journal Nature Materials, ...

Magnetic fields provide a new way to communicate wirelessly

September 1, 2015

Electrical engineers at the University of California, San Diego demonstrated a new wireless communication technique that works by sending magnetic signals through the human body. The new technology could offer a lower power ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.