New early warning system for landslide prediction

Oct 21, 2010
New early warning system for landslide prediction
The field trial of the new system showing the acoustic monitoring taking place

A new type of sound sensor system has been developed to predict the likelihood of a landslide.

Thought to be the first system of its kind in the world it, works by measuring and analysing the acoustic behaviour of soil to establish when a is imminent so preventative action can be taken.

Noise created by movement under the surface builds to a crescendo as the slope becomes unstable and so gauging the increased rate of generated sound enables accurate prediction of a catastrophic soil collapse.

The technique has been developed by researchers at Loughborough University, in collaboration with the British Geological Survey, through two projects funded by the Engineering and Physical Sciences Research Council (EPSRC).

The detection system consists of a network of sensors buried across the hillside or embankment that presents a risk of collapse. The sensors, acting as microphones in the subsoil, record the acoustic activity of the soil across the slope and each transmits a signal to a central computer for analysis.

A diagram of the acoustic monitoring system

Noise rates, created by inter-particle friction, are proportional to rates of soil movement and so increased acoustic emissions mean a slope is closer to failure. Once a certain noise rate is recorded, the system can send a warning, via a text message, to the authorities responsible for safety in the area. An early warning allows them to evacuate an area, close transport routes that cross the slope or carry out works to stabilise the soil.

Neil Dixon, professor of geotechnical engineering at Loughborough University and principal investigator on the project, explains how the system – thought to be a global first – works. “In just the same way as bending a stick creates cracking noises that build up until it snaps, so the movement of soil before a landslide creates increasing rates of noise,” said Professor Dixon.

“This has been known since the 1960s, but what we have been able to do that is new is capture and process this information so as to quantify the link between noise and soil displacement rates as it happens, in real time – and hence provide an ,” he added.

The system is now being developed further to produce low cost, self-contained sensors that do not require a central computer. This work, which is being carried out under the second project funded by EPSRC, is focused on manufacture of very low cost sensors with integrated visual and/or audible alarms, for use in developing countries. Ongoing work includes field trials, market research and planning commercial exploitation of the technology.

“The development of low cost independent acoustic slope sensors has only become possible in very recent times due to the availability of microprocessors that are fast, small and cheap enough for this task,” says Dixon.

As well as the life-saving implications for countries prone to disastrous landslides, the technique can also be used in monitoring the condition of potentially unstable slopes built to support transport infrastructure, such as rail and road embankments, in developed countries such as the UK.

Current development work is being funded through Loughborough University’s knowledge transfer account, a fund supplied by EPSRC to help commercial exploitation of inventions arising from its research projects. A commercially available Alarms sensor is expected to be launched in the next two years.

Explore further: Wireless sensor transmits tumor pressure

add to favorites email to friend print save as pdf

Related Stories

Finding a Better Way to Quiet Noisy Environments

Apr 05, 2006

Researchers at UCSD report in the April 4 issue of the Journal of Sound and Vibration a new mathematical algorithm designed to dramatically improve noise-cancellation technologies that are used to quiet everything from a ...

New sensor nanotechnology simplifies disease detection

Oct 04, 2010

Researchers at Stony Brook University have developed a new sensor nanotechnology that could revolutionize personalized medicine by making it possible to instantly detect and monitor disease by simply exhaling ...

Acoustic noise contains valuable geophysical information

Dec 07, 2006

The proper processing of acoustic noise can provide a wealth of information. Geophysicists for example have used seismic background noise measurements to reconstruct the crustal structure under Southern California. The advantage ...

New sensors to predict landslides

Apr 22, 2010

Researchers at the University of Southampton expect to have sensor probes which can predict the onset of landslides by the end of this year.

Intelligent sensors gear up for real-time flood monitoring

Oct 18, 2006

An intelligent flood monitoring system that could give advance warning of the type of rapid flood that engulfed the UK Cornish village of Boscastle in 2004, is under test in the Yorkshire Dales. Danny Hughes, Phil Greenwood ...

Recommended for you

Wireless sensor transmits tumor pressure

7 hours ago

The interstitial pressure inside a tumor is often remarkably high compared to normal tissues and is thought to impede the delivery of chemotherapeutic agents as well as decrease the effectiveness of radiation ...

Seeing through the fog (and dust and snow) of war

Sep 19, 2014

Degraded visibility—which encompasses diverse environmental conditions including severe weather, dust kicked up during takeoff and landing and poor visual contrast among different parts of terrain—often ...

The oscillator that could makeover the mechanical watch

Sep 18, 2014

For the first time in 200 years the heart of the mechanical watch has been reinvented, thereby improving precision and autonomy while making the watch completely silent. EPFL researchers have developed an ...

User comments : 0