Image: Dark reflections in the Southern Cross

Oct 28, 2010
Image credit: NASA/JPL-Caltech/UCLA

NASA's Wide-field Infrared Survey Explorer, or WISE, captured this colorful image of the reflection nebula IRAS 12116-6001. This cloud of interstellar dust cannot be seen directly in visible light, but WISE's detectors observed the nebula at infrared wavelengths.

In images of reflection nebulae taken with visible light, clouds of dust reflect the light of nearby . The dust is warmed to relatively cool temperatures by the starlight and glows with , which WISE can detect. Reflection nebulae are of interest to astronomers because they are often the sites of new star formation.

The bright blue star on the right side of the image is the Epsilon Crucis. In the Bayer system of stellar nomenclature, stars are given names based on their relative brightness within a constellation. The Greek alphabet is used to designate the star's apparent brightness compared to other stars in the same constellation. "Alpha" is the brightest star in the constellation, "beta" the second brightest, and so on. In this case, "epsilon" is the fifth letter of the Greek alphabet, so Epsilon Crucis is the fifth brightest star in the constellation Crux.

Crux is a well-known that can be easily seen by observers in the Southern Hemisphere and from low northern latitudes. Also known as the Southern Cross, Crux is featured in many country's flags, including Australia, Brazil and New Zealand (although New Zealand's flag does not include Epsilon Crucis).

The colors used in this image represent specific wavelengths of infrared light. The blue color of Epsilon Crucis represents light emitted at 3.4 and 4.6 microns. The green-colored star seen beside Epsilon Crucis is emitting light at 12 microns. This star is IRAS 12194-6007, a carbon star that is near the end of its lifecycle. Since the emitted by this star are longer than those from Epsilon Crucis, it is cooler. The green and red colors seen in the reflection nebula represent 12- and 22-micron light coming from the nebula's dust grains warmed by nearby stars.

Explore further: Raven soars through first light and second run

add to favorites email to friend print save as pdf

Related Stories

R Coronae Australis: A cosmic watercolor (w/ Video)

Jun 30, 2010

The star R Coronae Australis lies in one of the nearest and most spectacular star-forming regions. This portrait was taken by the Wide Field Imager (WFI) on the MPG/ESO 2.2-metre telescope at the La Silla ...

WISE Captures the Unicorn's Rose

Aug 26, 2010

(PhysOrg.com) -- Unicorns and roses are usually the stuff of fairy tales, but a new cosmic image taken by NASA's Wide-field Infrared Explorer (WISE) shows the Rosette nebula located within the constellation ...

AKARI's view on birth and death of stars

Aug 28, 2006

AKARI, the Japan Aerospace Exploration Agency (JAXA) infrared astronomical satellite with ESA participation, is continuing its survey of the sky and its mapping of our cosmos in infrared light. New exciting ...

Jumbo Jellyfish or Massive Star?

Jun 17, 2010

(PhysOrg.com) -- Some might see a blood-red jellyfish in a forest of seaweed, while others might see a big, red eye or a pair of lips. In fact, the red-colored object in this new infrared image from NASA's ...

Astronomers Discover New Star in Southern Cross

Jan 18, 2007

A research team at Swarthmore College discovered a previously unknown companion to the bright star, beta Crucis, in the Southern Cross. As a prominent member of the well-known constellation Crux, or the Southern ...

WISE Captures a Cosmic Rose

Mar 16, 2010

(PhysOrg.com) -- A new infrared image from NASA's Wide-field Infrared Survey Explorer, or WISE, shows a cosmic rosebud blossoming with new stars. The stars, called the Berkeley 59 cluster, are the blue dots ...

Recommended for you

Raven soars through first light and second run

5 hours ago

Raven, a Multi-Object Adaptive Optics (MOAO) science demonstrator, successfully saw first light at the Subaru Telescope on the nights of May 13 and 14, 2014 and completed its second run during the nights ...

How can we find tiny particles in exoplanet atmospheres?

Aug 29, 2014

It may seem like magic, but astronomers have worked out a scheme that will allow them to detect and measure particles ten times smaller than the width of a human hair, even at many light-years distance.  ...

User comments : 0