Current loss tracked down by magnetic fingerprint

Oct 26, 2010

Conventional solar cells made from crystalline silicon are difficult and energy-intensive to manufacture. Organic solar cells are cheaper, but have always produced less electricity. Why this is so has never been fully explained. Now, a method developed by HZB researchers reveals that current flow inside a solar cell can be affected by the spin of the charge-carrying particles.

Scientists have been working on organic solar cells for about a decade. Their manufacture is environmentally friendly and they can be applied to all kinds of materials, such as plastic film, for instance. The trouble is, they only yield a fifth of the electrical energy that do, with most of the electrical current trickling away into the material instead.

German scientists at Helmholtz-Zentrum Berlin (HZB) have developed a method that uses the magnetic fingerprint of the charge-carrying particles to reveal exactly how electricity is being lost. They did so by cleverly manipulating the of these particles. Together with Scottish researchers, they have published their findings in Physical Review Letters.

Being made from carbon compounds, in other words plastics, are also known as . The heart of the cell is a layer only a hundred millionth of a millimetre thick, made of two components, polymers and soccer ball-shaped fullerenes, mixed together. When light strikes a layer of this mixture, the polymer component is set into an excited state, dubbed an exciton. When an exciton bumps into a fullerene, an electron jumps over to the soccer ball molecule and a "hole" remains behind in the polymer. So that current can flow, the electrons and holes must travel to their respectively opposite contacts. The travel via the fullerenes while the holes travel via the . The holes, which scientists call polarons, can obstruct one another along their path and thus reduce the efficiency of the solar cell. This sets the limit on how much electrical energy can be yielded from a given amount of solar energy.

Using electrically detected magnetic resonance (EDMR), the scientists demonstrated that the polarons always get in one another's way when their magnetic moment (spin) is identical. "For the first time, we have uncovered and thus proven the long-assumed formation of these so-called bipolarons," says Jan Behrends, who performed the measurements during his doctorate at the HZB Institute for Silicon Photovoltaics.

The researchers' EDMR method involved manipulating the spin of the polarons using an external magnetic field and a microwave pulse. Using a resonance effect, the randomly distributed spin could be turned and aimed like a compass needle. Measurements revealed that current flows freely when the tiny magnets are oppositely aligned, but is blocked when they are aligned in the same direction.

The researchers demonstrated these current losses in plastic at room temperature, having redesigned an experimental method originally developed for silicon. "With this important finding, we should soon see advancements in organic solar cell technology as new plastics are introduced that develop no spin blockades", says project leader Dr. Klaus Lips.

Explore further: First in-situ images of void collapse in explosives

More information: Phys. Rev. Lett. 105, 176601 (2010). doi:10.1103/PhysRevLett.105.176601

Related Stories

Solar cells go thin and flimsy

Sep 04, 2006

The next generation of solar cells made out of plastics and microscopic crystals instead of silicon are taking shape at UQ (University of Queensland). UQ Master of Physics student Michael Deceglie is working ...

New "Molecular Wires" Nanotechnology to Replace Silicon

Aug 23, 2004

Scientists from the U.S. Department of Energy's Brookhaven National Laboratory and the University of Florida have uncovered information that may help "molecular wires" replace silicon in micro-electronic circuits and/or co ...

Sunny Record: Breakthrough for Hybrid Solar Cells

Feb 02, 2010

German scientists at the Department of Microsystems Engineering (IMTEK) and the Freiburg Materials Research Center (FMF) have succeeded in developing a method for treating the surface of nanoparticles which ...

Silver Nanoparticles Give Polymer Solar Cells A Boost

Oct 05, 2009

(PhysOrg.com) -- Small bits of metal may play a new role in solar power. Researchers at Ohio State University are experimenting with polymer semiconductors that absorb the sun’s energy and generate electricity. The goal: ...

Recommended for you

First in-situ images of void collapse in explosives

16 hours ago

While creating the first-ever images of explosives using an x-ray free electron laser in California, Los Alamos researchers and collaborators demonstrated a crucial diagnostic for studying how voids affect ...

New approach to form non-equilibrium structures

Jul 24, 2014

Although most natural and synthetic processes prefer to settle into equilibrium—a state of unchanging balance without potential or energy—it is within the realm of non-equilibrium conditions where new possibilities lie. ...

Nike krypton laser achieves spot in Guinness World Records

Jul 24, 2014

A set of experiments conducted on the Nike krypton fluoride (KrF) laser at the U.S. Naval Research Laboratory (NRL) nearly five years ago has, at long last, earned the coveted Guinness World Records title for achieving "Highest ...

User comments : 0