A crucial link in immune development and regulation unearthed

Oct 13, 2010

An Australian team of scientists has uncovered a quality control mechanism that must take place for our immune system to subsequently effectively destroy harmful viruses and bacteria.

The findings were published today in the prestigious international journal Nature.

The team solved a 15-year puzzle by working out the structure and function of a protein called pre T alpha that is essential in guiding the correct expression of various receptors expressed by , of the .

These receptors, known as T cell receptors, recognise unique components of microbial pathogens.

Joint team leader, ARC Federation Fellow Professor Jamie Rossjohn, from Monash University's School of Biomedical Sciences, said that understanding the structure of pre-T alpha explains a fundamental step in T cell development and anti-microbial immunity.

"We showed that the pre-T alpha molecule not only assists in the expression of functional T cell receptors but it also allows two molecules to bind together, which alerts the T cell that this receptor is constructed properly, allowing the T cell to move to the next step in its development," Professor Rossjohn said.

Co-leader of the project Professor Jim McCluskey from the University of Melbourne said without T we would be profoundly immunodeficient and therefore pre-T alpha plays an essential role in ensuring proper immunity.

"Additionally, there is some evidence that pre-T alpha may also be involved in some childhood leukaemias, so this new knowledge of how it functions may be important in diagnosis and treatment of acute lymphoblastic leukaemia," Professor McCluskey said.

Explore further: The impact of bacteria in our guts

Related Stories

Laminin builds the neuromuscular synapse

Sep 15, 2008

Like a plug and a socket, a nerve and a muscle fiber mesh at the neuromuscular junction. New work by Nishimune et al published in the Journal of Cell Biology reveals that an extracellular matrix protein called laminin shapes ...

Targeting tumors the natural way

Mar 25, 2007

By mimicking Nature's way of distinguishing one type of cell from another, University of Wisconsin-Madison scientists now report they can more effectively seek out and kill cancer cells while sparing healthy ones.

Scientists identify new cellular receptor for HIV

Feb 10, 2008

A cellular protein that helps guide immune cells to the gut has been newly identified as a target of HIV when the virus begins its assault on the body's immune system, according to researchers from the National Institute ...

Mounting a multi-layered attack on fungal infections

Sep 08, 2009

Unravelling a microbe's multilayer defence mechanisms could lead to effective new treatments for potentially lethal fungal infections in cancer patients and others whose natural immunity is weakened.

Study pinpoints role of insulin on glucagon levels

Apr 07, 2009

April 7, 2009 - Researchers at the Joslin Diabetes Center have shown for the first time that insulin plays a key role in suppressing levels of glucagon, a hormone involved in carbohydrate metabolism and regulating blood glucose ...

Recommended for you

The impact of bacteria in our guts

12 hours ago

The word metabolism gets tossed around a lot, but it means much more than whether you can go back to the buffet for seconds without worrying about your waistline. In fact, metabolism is the set of biochemical ...

Stem cell therapies hold promise, but obstacles remain

12 hours ago

(Medical Xpress)—In an article appearing online today in the journal Science, a group of researchers, including University of Rochester neurologist Steve Goldman, M.D., Ph.D., review the potential and ch ...

New hope in fight against muscular dystrophy

13 hours ago

Research at Stockholm's KTH Royal Institute of Technology offers hope to those who suffer from Duchenne muscular dystrophy, an incurable, debilitating disease that cuts young lives short.

Biologists reprogram skin cells to mimic rare disease

Aug 21, 2014

Johns Hopkins stem cell biologists have found a way to reprogram a patient's skin cells into cells that mimic and display many biological features of a rare genetic disorder called familial dysautonomia. ...

User comments : 0