One step closer to a drug treatment for cystic fibrosis

Oct 12, 2010

A University of Missouri researcher believes his latest work moves scientists closer to a cure for cystic fibrosis, one of the world's most common fatal genetic diseases.

The has published findings by Tzyh-Chang Hwang, a professor in the School of Medicine's Department of Medical Pharmacology and Physiology and the Dalton Cardiovascular Research Center. The publication has been recognized as the "paper of the week" for the journal, meaning Hwang's work is considered to be in the top 1 percent of papers reviewed annually in terms of significance and overall importance.

Hwang's work focuses on the two most common among approximately 1,500 mutations found in patients with . These two mutations cause specific chloride channels in the cell, known as the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) chloride channels, to malfunction. This ultimately leads to repeated pneumonia, the primary cause of most deaths associated with cystic fibrosis.

"The normal function of a cell is to pass across the at a very fast speed," Hwang said. "We know some signaling molecules elicit this reaction, much like a hand signals an automatic water faucet to dispense water. But in the case of cystic fibrosis, that signal is no longer detected by the mutated channel protein. Through some mechanisms we still don't quite understand, malfunction of this channel protein eventually leads to in the lung, which is believed to be responsible for the most severe symptoms of cystic fibrosis."

The most recent study found that manipulating the sensor of the channel protein can significantly rectify the malfunction of the mutated channel, thus opening the door to a drug design that may eventually be a "real cure," Hwang said.

"We could help a lot of patients if we can utilize the power of computer simulations and structure-based drug design to discover new therapeutical reagents for cystic fibrosis, but it's very expensive to do this kind of research in an academic institute," Hwang said.

Explore further: A closer look at a deadly bacterium sets the stage for new vaccines

Related Stories

At last, a living model for an important body channel

Oct 07, 2010

(PhysOrg.com) -- Ion channels provide a way for key molecules to cross into cells, are the means for many swift physical reactions and regulate the movement of fluid across internal cavities in our bodies. When chloride ions ...

Defective signaling pathway sheds light on cystic fibrosis

Feb 14, 2010

In a study that could lead to new therapeutic targets for patients with the cystic fibrosis, a research team from the University of California, San Diego School of Medicine has identified a defective signaling pathway that ...

Recommended for you

What happens inside a membrane

May 20, 2015

A new SISSA study has achieved two important results with a single effort: to devise an innovative method to analyse the structure of biological proteins immersed in their physiological context, and to closely ...

Biomedical sensors for disease detection made simple

May 19, 2015

Healthcare researchers are increasingly focused on the early detection and prevention of illnesses. Early and accurate diagnosis is vital, especially for people in developing countries where infectious diseases ...

Studying dynamics of ion channels

May 18, 2015

Scientists from the Vaziri lab at the Vienna Biocenter, together with colleagues at the Institute for Biophysical Dynamics at the University of Chicago, have developed a method using infrared spectroscopy ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.