One step closer to a drug treatment for cystic fibrosis

Oct 12, 2010

A University of Missouri researcher believes his latest work moves scientists closer to a cure for cystic fibrosis, one of the world's most common fatal genetic diseases.

The has published findings by Tzyh-Chang Hwang, a professor in the School of Medicine's Department of Medical Pharmacology and Physiology and the Dalton Cardiovascular Research Center. The publication has been recognized as the "paper of the week" for the journal, meaning Hwang's work is considered to be in the top 1 percent of papers reviewed annually in terms of significance and overall importance.

Hwang's work focuses on the two most common among approximately 1,500 mutations found in patients with . These two mutations cause specific chloride channels in the cell, known as the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) chloride channels, to malfunction. This ultimately leads to repeated pneumonia, the primary cause of most deaths associated with cystic fibrosis.

"The normal function of a cell is to pass across the at a very fast speed," Hwang said. "We know some signaling molecules elicit this reaction, much like a hand signals an automatic water faucet to dispense water. But in the case of cystic fibrosis, that signal is no longer detected by the mutated channel protein. Through some mechanisms we still don't quite understand, malfunction of this channel protein eventually leads to in the lung, which is believed to be responsible for the most severe symptoms of cystic fibrosis."

The most recent study found that manipulating the sensor of the channel protein can significantly rectify the malfunction of the mutated channel, thus opening the door to a drug design that may eventually be a "real cure," Hwang said.

"We could help a lot of patients if we can utilize the power of computer simulations and structure-based drug design to discover new therapeutical reagents for cystic fibrosis, but it's very expensive to do this kind of research in an academic institute," Hwang said.

Explore further: Structure of sodium channels different than previously believed

add to favorites email to friend print save as pdf

Related Stories

At last, a living model for an important body channel

Oct 07, 2010

(PhysOrg.com) -- Ion channels provide a way for key molecules to cross into cells, are the means for many swift physical reactions and regulate the movement of fluid across internal cavities in our bodies. When chloride ions ...

Defective signaling pathway sheds light on cystic fibrosis

Feb 14, 2010

In a study that could lead to new therapeutic targets for patients with the cystic fibrosis, a research team from the University of California, San Diego School of Medicine has identified a defective signaling pathway that ...

Recommended for you

Breakthrough points to new drugs from nature

Apr 16, 2014

Researchers at Griffith University's Eskitis Institute have developed a new technique for discovering natural compounds which could form the basis of novel therapeutic drugs.

World's first successful visualisation of key coenzyme

Apr 16, 2014

Japanese researchers have successfully developed the world's first imaging method for visualising the behaviour of nicotine-adenine dinucleotide derivative (NAD(P)H), a key coenzyme, inside cells. This feat ...

User comments : 0

More news stories

Finnish inventor rethinks design of the axe

(Phys.org) —Finnish inventor Heikki Kärnä is the man behind the Vipukirves Leveraxe, which is a precision tool for splitting firewood. He designed the tool to make the job easier and more efficient, with ...

Poll: Big Bang a big question for most Americans

Few Americans question that smoking causes cancer. But they have more skepticism than confidence in global warming, the age of the Earth and evolution and have the most trouble believing a Big Bang created the universe 13.8 ...