Researchers show how cells open 'doors' to release neurotransmitters

Oct 14, 2010 By Anne Ju
A schematic model of a fusion pore opening.

Like opening a door to exit a room, cells in the body open up their outer membranes to release such chemicals as neurotransmitters and other hormones.

Cornell researchers have shed new light on this lightning-quick, impossibly small-scale process, called exocytosis, by casting sharp focus on what happens right at the moment the "doors" on the cell wall open.

Publishing online Oct. 11 in , researchers led by Cornell's Manfred Lindau used a combination of , electrophysiology, microfabricated electrochemical sensors and advanced microscopy to elucidate exocytosis of noradrenaline. This is a neurotransmitter released from the adrenal gland by a type of neuroendocrine cell called a chromaffin cell.

Lindau, professor of applied and engineering physics, studies the properties of exocytosis by looking at how packets of chemicals called vesicles adhere to the cell wall and open the door between the vesicle interior and cell's exterior. This "door" is called the fusion pore.

"Biochemists have been working on experiments to identify what proteins and molecules are the main players in this mechanism of release," Lindau said.

It turns out that neurotransmitter release is largely regulated by a set of proteins called SNARE proteins, and one called synaptobrevin is located on the cell's vesicle membrane. The synaptobrevins bind with other proteins called syntaxin and SNAP-25, which are located in the that encloses the cell. When the cell is excited and the neurotransmitter release is triggered, these proteins together are believed to open the fusion pore.

Lindau's team of researchers used genetically altered mouse embryos that lacked synaptobrevin and introduced viruses with modified versions of the into their experiments. They then imaged and studied the release function of the for the different versions of the synaptobrevins.

They discovered that one end of the synaptobrevin -- the part that anchors it in the vesicle membrane -- is pulled deeper into the vesicle membrane when the cell is stimulated. This movement is what temporarily changes the structure of the membrane and allows the opening of the fusion pore and neurotransmitter release. It had previously been thought that the fusion pore originates by an indirect effect of the SNARE protein in the membrane lipids. Lindau's experiments have shown that the vesicle membrane component of synaptobrevin is the active part of the molecular nanomachine that forms the fusion pore.

To continue visualizing the molecular details of this complex process, Lindau is working on sabbatical at the University of Oxford with professor Mark Sansom on molecular dynamics and computer simulations of the SNARE proteins and neurotransmitter exocytosis.

Explore further: 'K-to-M' histone mutations: How repressing the repressors may drive tissue-specific cancers

More information: The research published in PNAS was funded primarily by the National Institutes of Health and the Cornell Nanobiotechnology Center, which is supported by the National Science Foundation. The paper's authors include former Cornell graduate students Annita Ngatchou, et al.

Related Stories

Biologists search for 'half-fusion'

May 16, 2005

Every living cell is surrounded by a membrane, a thin barrier that separates the genetic machinery of life from the non-living world outside. Though barriers, membranes are not impervious. Cells use a complex hierarchy of ...

Gene called flower missing link in vesicle uptake in neurons

Sep 03, 2009

As part of the intricate ballet of synaptic transmission from one neuron to the next, tiny vesicles - bubbles containing the chemical neurotransmitters that make information exchange possible -- travel to the tip of neurons ...

Viewing dye-packed vesicles causes them to explode

Sep 25, 2007

It’s a long-standing question: Can just the act of observing an experiment affect the results? According to a new study by Rockefeller University scientists, if the experiment uses a fluorescent dye called acridine orange, ...

Recommended for you

Hydrogen powers important nitrogen-transforming bacteria

Aug 29, 2014

Nitrite-oxidizing bacteria are key players in the natural nitrogen cycle on Earth and in biological wastewater treatment plants. For decades, these specialist bacteria were thought to depend on nitrite as ...

New tool aids stem cell engineering for medical research

Aug 28, 2014

A Mayo Clinic researcher and his collaborators have developed an online analytic tool that will speed up and enhance the process of re-engineering cells for biomedical investigation. CellNet is a free-use Internet platform ...

User comments : 0