Cells can be cultured and sorted on specifically patterned surfaces of biomaterials

Oct 22, 2010
Figure 1: Cells can be corralled on a chip in different ways by etching grooves into its surface. Depending on the area and shape of non-etched areas, cells can be separated and cultured either singly or in clumps of different forms. Credit: 2010 Hiromi Miyoshi

Patterns of grooves etched into the surface of a silicon chip can guide, trap and filter migrating cells, biomaterials scientists from Japan and Korea have discovered. The results open the way to engineering surfaces to study the movement of particular cell types during development and cancer, or to confine cells in tissue culture and protect against interference by cellular invaders. As the technique is biologically non-invasive, it should be ready for use in biomedical applications without years of safety testing.

The research team is led by Taiji Adachi of the RIKEN Innovation Center in Wako and includes colleagues from that institute and Pusan National University in Korea. Using time-lapse photography the researchers observed the behavior of the epidermal associated with fish scales known as keratocytes. These cells migrate rapidly and are often used in studies of cell movement.

Hiromi Miyoshi, a researcher of Adachi's team and her colleagues engineered grooves of different dimensions in the coating of a . The grooves were all 20 micrometers deep but of three different widths -- 1.5, 4 and 20 micrometers. Initially, the researchers observed what happened when moving cells encountered a single groove of these dimensions. They then etched a rectangular crisscross pattern of intersecting grooves 1.5 and 4 micrometers wide and the same depth. The widths were carefully selected with respect to the dimensions of the cells. Four micrometers is about the size of the and 20 micrometers the reach of the moving front of the cell, Miyoshi explains.

When the migrating cells encountered a single groove, they responded in one of three different ways. Some simply crossed the groove, some turned back, and some moved into and along the groove since they were constrained by it. As the width of the groove decreased, the proportion of cells turning back increased to the point where, at 1.5 micrometers, there were no cells crossing and more than 90% turned back.

The intersecting grooves four micrometers wide tended to slow movement of the cells considerably, and in some cases stop or trap the cells. As it is known from previous work that different cell types respond differently to the topography of the surface over which they travel, the researchers suggest that different etched patterns could be used to filter or exclude individual cell types.

“We are now planning a more detailed study of cell migration in a three-dimensional environment,” says Miyoshi.

Explore further: Jumping hurdles in the RNA world

More information: Miyoshi, H., et al. Control of highly migratory cells by microstructured surface based on transient change in cell behavior. Biomaterials 31, 8539–8545 (2010).

add to favorites email to friend print save as pdf

Related Stories

'Micro-rack' measures cell mechanical properties

Mar 02, 2007

Researchers at the National Institute of Standards and Technology have developed a microelectromechanical system (MEMS) cell-stretcher that can measure the mechanical properties of a living cell, such as its ...

Close encounters with 3-D cell growth

Dec 16, 2008

(PhysOrg.com) -- MIT engineers have built a device that gives them an unprecedented view of three-dimensional cell growth and migration, including the formation of blood vessels and the spread of tumor cells.

Device draws cells close -- but not too close -- together

Mar 29, 2007

In a popular children's game participants stand as close as possible without touching. But on a microscopic level, coaxing cells to be very, very close without actually touching one another has been among the most frustrating ...

Recommended for you

Molecules that came in handy for first life on Earth

8 hours ago

For the first time, chemists have successfully produced amino acid-like molecules that all have the same 'handedness', from simple building blocks and in a single test tube. Could this be how life started. ...

Jumping hurdles in the RNA world

Nov 21, 2014

Astrobiologists have shown that the formation of RNA from prebiotic reactions may not be as problematic as scientists once thought.

New computer model sets new precedent in drug discovery

Nov 18, 2014

A major challenge faced by the pharmaceutical industry has been how to rationally design and select protein molecules to create effective biologic drug therapies while reducing unintended side effects - a challenge that has ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.