Cell survival protein discovery rewrites immune system story

October 7, 2010
This is Dr. Ingela Vikstrom and associate professor David Tarlinton, from the institute’s immunology division. Credit: The Walter and Eliza Hall Institute

A discovery by Walter and Eliza Hall Institute researchers in Melbourne, Australia, reported in today's edition of Science, is set to rewrite a long-held belief about how the body's immune system establishes its memory.

The findings of Dr Ingela Vikstrom and Associate Professor David Tarlinton, from the institute's Immunology division, centre on called B cells that produce the antibodies which fight infection.

"B cells and are the key to the success of all currently used vaccines for immunity in humans," said Associate Professor Tarlinton. "It is therefore critical that we continue to develop our knowledge of the that lead to immune function, which are still only vaguely understood."

Memory B cells are essential for the long-lived immunity that arises after immunisation. To develop into , B cells have to survive the natural process of apoptosis, or programmed cell death, that occurs following a large immune response.

Associate Professor Tarlinton and Dr Vikstrom study the so-called pro-survival proteins that regulate B and are therefore responsible for instructing these cells whether to live or die.

Dr Vikstrom said that B cell memory arises in temporary called germinal centres that develop in response to activation of the immune system.

"We used genetic and pharmacological methods to identify which pro-survival molecules were essential for the process of 'instructing' these cells to establish germinal centres, as well as instructing activated B cells to proliferate and differentiate into memory B cells," Dr Vikstrom said.

"We studied two well-known pro-survival proteins called Bcl-xL and Mcl-1, which we knew were involved in the process. It surprised us to find that, contrary to popular belief, Mcl-1 is the essential pro-survival protein required for creation and maintenance of B cell memory."

The finding contradicts the widely accepted theory in immunology circles that Bcl-xL is the major pro-survival protein responsible for sustaining the development of memory B cells.

The findings build on a paper Associate Professor Tarlinton and Dr Vikstrom published earlier this year in Proceedings of the National Academy of the Sciences, with institute researchers Dr Andrew Lew and Dr Emma Carrington. Using a molecule that blocked the action of Bcl-xL, the study revealed that Bcl-xL was not necessary for the development of germinal centres and memory , indicating that another pro-survival protein – now shown to be Mcl-1 – was the key to survival.

Mcl-1 is known to be an important survival protein for cancers. Associate Professor Tarlinton said the discovery could have repercussions for cancer treatment, as cancerous cells often arise from unregulated cell growth caused by defects in the apoptotic pathway. It could also have implications for the treatment of autoimmune disease and inhibiting transplant rejection.

"All cells have the potential to undergo apoptosis, so developing our understanding of the major proteins responsible for this process will have applications to all cell types in the body," he said.

Explore further: New use for a cell toxin found to inhibit survival proteins in cancer cells

Related Stories

New therapeutic target for melanoma identified

April 16, 2009

A protein called Mcl-1 plays a critical role in melanoma cell resistance to a form of apoptosis called anoikis, according to research published this week in Molecular Cancer Research.

New function for the protein Bcl-xL: It prevents bone breakdown

September 14, 2009

In blood cells, the protein Bcl-xL has a well-characterized role in preventing cell death by a process known as apoptosis. However, its function(s) in osteoclasts, cells that slowly breakdown bone (a process known as resorption), ...

Overcoming tumor resistance to anti-cancer agent TRAIL

March 22, 2010

The TRAIL ligand is a promising anticancer agent that preferentially kills tumor cells without apparent damage to healthy cells. Many cancers exhibit resistance to TRAIL, however, thus limiting its therapeutic potential. ...

Recommended for you

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

Quantum Theory May Explain Wishful Thinking

April 14, 2009

(PhysOrg.com) -- Humans don’t always make the most rational decisions. As studies have shown, even when logic and reasoning point in one direction, sometimes we chose the opposite route, motivated by personal bias or simply ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.