Architecture of soil particles greatly influences if, when pollutants migrate

October 14, 2010
Scientists found that the connections between pores in sand and other medium influence the speed with which pollutants migrate. The fewer connections between the pores, the greater the probability that contaminant molecules will take a very long time to leave the grain.

Pollutants can find themselves ensnared underground with few options for escape, according to a study by scientists at Iowa State University, University of Texas at Arlington, and Pacific Northwest National Laboratory. The team found that, while many factors influence contaminant migration, one of the most important are the architecture of the soil grains. The less pore connectivity, the greater the probability that contaminants will take a long time to leave the grain.

Understanding if and when a pollutant moves from an industrial to an agricultural site allows scientists to better predict pollutant migration, test remediation systems, and determine the effectiveness of cleanup projects. While the study was done on uranium, a concern at former nuclear weapons production sites, the research applies to chemicals more commonly associated with machine shops and dry cleaners.

Existing models that predict the rates of desorption and diffusion from the subsurface did not account for real-world grain-scale properties. So, the scientists focused on the desorption, diffusion, and migration of uranium from inside the individual subsurface particles. They conducted numerical calculations and evaluations of diffusion and in complex granular porous media, using resources at EMSL.

The results were surprising. The fundamental process of desorption and diffusion from the granular medium to the surrounding liquid phase was much slower than projected by previous models. Also, the team found the rate of desorption dramatically decreased over time. This phenomenon is governed by connectivity, the interconnected architecture of microscopic pores inside individual grains.

Laboratory and field research is under way to characterize grain-scale pore architecture and to investigate the larger-scale manifestation of the grain-scale contaminant .

Explore further: New computer model concept could solve big, real-world problems on a small, porous scale

More information: Ewing RP, Q Hu, and C Liu. 2010. Scale Dependence of Intragranular Porosity, Tortuosity, and Diffusivity. Water Resources Research 46, W06513. DOI:10.1029/2009WR008183

Related Stories

Staying out of jams

July 23, 2007

What do sand, coal, cereal, ice cubes, marbles, gravel, sugar, pills, and powders have in common" They are all granular materials, members of an unruly family of substances that refuse to completely conform to the laws of ...

Where does stored nuclear waste go?

November 27, 2007

Millions of gallons of hazardous waste resulting from the nation’s nuclear weapons program lie in a remote location in southeastern Washington state called Hanford. Beneath this desert landscape about two million curies ...

Where Did the Uranium Go?

October 26, 2009

( -- Uranium's migration through the soil depends on groundwater's chemical composition, according to a recent study by Pacific Northwest National Laboratory. Scientists showed that uraniumattached to soil particles ...

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

New 'self-healing' gel makes electronics more flexible

November 25, 2015

Researchers in the Cockrell School of Engineering at The University of Texas at Austin have developed a first-of-its-kind self-healing gel that repairs and connects electronic circuits, creating opportunities to advance the ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Atom-sized craters make a catalyst much more active

November 24, 2015

Bombarding and stretching an important industrial catalyst opens up tiny holes on its surface where atoms can attach and react, greatly increasing its activity as a promoter of chemical reactions, according to a study by ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.