Improved antibiotic coatings

Oct 19, 2010

Bacteria have a natural ability to attach themselves to surfaces, both natural and synthetic. Once attached, they often work cooperatively to form biofilms, thin layers of bacterial colonies that can coat the surface of a medical device and introduce the risk of infection. As a result, orthopedic implants, catheters, and even contact lenses can become vehicles for infection.

Antibacterial on the surface can reduce the risk but generally these materials do not stick well to the devices. A research group at the University of South Australia is working on techniques to permanently bind antibacterial coatings to by binding them to a polymer layer. They present their research today at the AVS 57th International Symposium & Exhibition, which takes place this week at the Albuquerque Convention Center in New Mexico.

The Australian scientists start by applying a plasma polymer , a technique that works on many different base materials including glass, metal, and many polymers used in devices. This ultrathin film acts as a scaffold on which to bind materials that either signal the bacteria not to attach by interfering with the cell's attachment mechanism or that prevent multiplication once the are attached.

The presentation will compare several different antibiotics applied to the polymer film, including established antibiotic compounds, silver nanoparticles, and novel diterpene compounds derived from Australian plants that have been used in traditional medicine. Each approach has pros and cons that must be carefully weighed before using them on a device implanted in the human body.

"We believe that no solution will be universal so we want to establish an array of approaches," says Hans Griesser of the University of South Australia. "The new diterpene compounds that we are testing are structurally quite different from established antibacterial compounds, and they are effective against methicillin-resistant Staphylococcus aureus. That is what got us excited about them."

Explore further: Triplet threat from the sun

More information: The presentation, "Some strategies and Results for Antibacterial Coatings" is at 2:40 p.m. on Tuesday, October 19, 2010. ABSTRACT: www.avssymposium.org/Open/Sear… aperNumber=BI1-TuA-3

Provided by American Institute of Physics

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Antibacterial silver nanoparticles are a blast

May 24, 2010

Writing in the International Journal of Nanoparticles, Rani Pattabi and colleagues at Mangalore University, explain how blasting silver nitrate solution with an electron beam can generate nanoparticles that are more effect ...

Researchers 'design' therapeutic coatings of silver

Jul 05, 2010

(PhysOrg.com) -- Swiss researchers have demonstrated how they can adjust process conditions to influence the properties of novel plasma polymer coatings containing silver nanoparticles. Tailor-made films can ...

Silver Nanoparticles Deadly to Bacteria

Mar 10, 2008

Hygienic, antibacteria sprays can be harmful to the environment as well as germs. Toxic solvents are necessary to ensure that bacteria is destroyed but now there could be a new way to achieve this without ...

MIT crafts bacteria-resistant films

May 15, 2008

Having found that whether bacteria stick to surfaces depends partly on how stiff those surfaces are, MIT engineers have created ultrathin films made of polymers that could be applied to medical devices and other surfaces ...

Recommended for you

Triplet threat from the sun

17 hours ago

The most obvious effects of too much sun exposure are cosmetic, like wrinkled and rough skin. Some damage, however, goes deeper—ultraviolet light can damage DNA and cause proteins in the body to break down ...

Towards controlled dislocations

Oct 20, 2014

Crystallographic defects or irregularities (known as dislocations) are often found within crystalline materials. Two main types of dislocation exist: edge and screw type. However, dislocations found in real ...

Chemists tackle battery overcharge problem

Oct 17, 2014

Research from the University of Kentucky Department of Chemistry will help batteries resist overcharging, improving the safety of electronics from cell phones to airplanes.

Surface properties command attention

Oct 17, 2014

Whether working on preventing corrosion for undersea oil fields and nuclear power plants, or for producing electricity from fuel cells or oxygen from electrolyzers for travel to Mars, associate professor ...

User comments : 0