AFM tips from the microwave

October 21, 2010
Dr. Stephanie Hoeppener is working with a atomic force microscope for which a Jena researcher team has developed a new procedure allowing to produce sharper probes. Credit: Jan-Peter Kasper/University Jena

Scientists from the Friedrich-Schiller-University Jena (Germany) have succeeded in improving a fabrication process for Atomic Force Microscopy (AFM) probe tips.

Atomic Force Microscopy is able to scan surfaces so that even tiniest become visible. Knowledge about these structures is for instance important for the development of new materials and carrier systems for active substances. The size of the probe is highly important for the image quality as it limits the dimensions that can be visualized – the smaller the probe, the smaller the structures that are revealed.

Carbon nanotubes are supposed to be a superior material for the improvement of such scanning probes. However, it is difficult to attach them on scanning probes, which limits their practical use.

Chemists of the Friedrich-Schiller-University Jena found a way to overcome these problems. The research team of Prof. Dr. Ulrich S. Schubert succeeded in developing a new type of process that allows the growth of carbon nanotubes on the actual scanning probe. These innovative discoveries are published in the Nano Letters and are available online.

Dr. Stephanie Hoeppener from Jena University holds a glass cylinder with carbon nanotubes for atomic force microscopy. Credit: Jan-Peter Kasper/University Jena

For this process the Jena scientists are using radiation for a gentle but very fast growth of the nanotubes. The growth starts at small cobalt particles, that are being taken up with the help of the AFM tip. "The metal particles strongly heat up in the microwave and reach a temperature that is sufficient to convert alcohol vapor into carbon. The heating process works similar like a forgotten spoon in the kitchen microwave which also absorbs the microwave radiation very effectively," explains Tamara Druzhinina from Schubert`s research team. "Carbon nanotubes can be grown very quickly due to the special conditions inside of the microwave which can generate a pressure up to 20 bar" adds her colleague Dr. Stephanie Hoeppener.

The Jena chemist Prof. Schubert points out the practical benefits of the process: "The method we developed can potentially result in a very cost-efficient production technology of for instance high resolution probes for Scanning Force Microscopy. These are already available on the market but they are very expensive at 350 Euro each. With the process we can reach a price level, that would justify the use of such tips also just for routine measurements."

Explore further: Methodist Neurosurgeon Makes Quantum Leap on Nano-Level

More information: Tamara S. Druzhinina, Stephanie Hoeppener, Ulrich S. Schubert: „Microwave-Assisted Fabrication of Carbon Nanotube AFM Tips", DOI: 10.1021/nl101934j

Related Stories

Methodist Neurosurgeon Makes Quantum Leap on Nano-Level

February 22, 2006

A neurosurgeon at the Methodist Neurological Institute (NI) is the first to use an enzyme-driven technique to label nanotubes with quantum dots, giving scientists a better way to see single-walled carbon nanotubes.

IBM Scientists Effectively Eliminate Wear at the Nanoscale

September 7, 2009

(PhysOrg.com) -- IBM scientists have demonstrated a promising and practical method that effectively eliminates the mechanical wear in the nanometer-sharp tips used in scanning probe-based techniques. This discovery can potentially ...

New nanocrystalline diamond probes overcome wear

November 10, 2009

Researchers at the McCormick School of Engineering and Applied Science at Northwestern University have developed, characterized, and modeled a new kind of probe used in atomic force microscopy (AFM), which images, measures, ...

Recommended for you

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.