Wallflowers become extroverts in a crowd

September 28, 2010 by Kandice Carter

While it's long been said that two's company and three's a crowd, that's just how mesons like it. A recent experiment at DOE's Jefferson Lab demonstrates that these subatomic particles engage more with other particles when in a crowd.

One of the simplest ways to study subatomic is to scatter a highly energetic beam of particles off a single . However, the reality is a little messier. Most nuclear physics experiments produce new particles inside nuclei, which contain many protons and neutrons. A nucleus presents far more crowded conditions: new particles are surrounded by the nucleus' protons and neutrons, and their quarks and gluons.

Physicists conducted an experiment to measure how easy or difficult it is for a particle to travel through the crowded conditions of different nuclei, their so-called nuclear transparency. In the experiment, energetic photons were beamed into the of five targets: deuterium, carbon, titanium, iron and lead. Two types of mesons, omega and phi, were produced as the photons smacked into the nucleus. Just like protons and neutrons, omega and phi mesons are built of quarks.

The experimenters found that the more protons and neutrons in the nucleus, the fewer omega and phi mesons made it out. Hence, in terms of nuclear transparency, the nucleus becomes less transparent to mesons as its numbers of protons and neutrons increase.

The new paper featuring the result was published in the September 10 issue of .

Explore further: Physicists plan quark conference

Related Stories

Physicists plan quark conference

April 13, 2005

Physicists from around the world will gather at Madison's Monona Terrace from Wednesday, April 27 - Sunday, May 1, to explore the world of quarks, subatomic particles that represent the frontier of modern particle physics. The ...

Extra large carbon

February 9, 2010

An exotic form of carbon has been found to have an extra large nucleus, dwarfing even the nuclei of much heavier elements like copper and zinc, in experiments performed in a particle accelerator in Japan. The discovery is ...

Recommended for you

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...

Iron-gallium alloy shows promise as a power-generation device

September 29, 2015

An alloy first made nearly two decades ago by the U. S. Navy could provide an efficient new way to produce electricity. The material, dubbed Galfenol, consists of iron doped with the metal gallium. In new experiments, researchers ...

Invisibility cloak might enhance efficiency of solar cells

September 30, 2015

Success of the energy turnaround will depend decisively on the extended use of renewable energy sources. However, their efficiency partly is much smaller than that of conventional energy sources. The efficiency of commercially ...

Extending a battery's lifetime with heat

October 1, 2015

Don't go sticking your electronic devices in a toaster oven just yet, but for a longer-lasting battery, you might someday heat them up when not in use. Over time, the electrodes inside a rechargeable battery cell can grow ...


Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Sep 29, 2010
So the greater the number of nuclear components the less transparent the nucleus is; I guess at the quantum level one should never take things as obvious. Wouldn't the components of the nucleus absorb the photon energy; the more components the more degrees of freedom to absorb the beam, so less energy for meason creation, so less are formed to start with? Would this still be considered nuclear transparency?
3 / 5 (2) Sep 30, 2010
No one is reading this because of the title.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.