Synthetic biology research on biofuels has a mathematical angle

Sep 09, 2010
Qing Lin and colleagues are using a common mathematical concept to develop 'nano-reactors' designed to generate much higher yields of biofuels.

(PhysOrg.com) -- A University at Buffalo chemist is applying a common mathematical concept to synthetic biology research aimed at finding ways to boost biofuels production.

Synthetic biology is a rapidly growing field in which are engineered to produce novel chemicals, such as pharmaceuticals or fuels.

Qing Lin, PhD, assistant professor of chemistry at the University at Buffalo, and Miguel Fuentes-Cabrera, a computational scientist at Oak Ridge National Laboratory, have been awarded a Keck Foundation grant to develop a robust yeast strain capable of generating significantly higher yields of biofuels than are now possible.

To do so, they will be using the idea of orthogonality, a common , in a new way.

"In mathematics, the idea of orthogonality is to intercept without disrupting the system as a whole," explains Lin. "In our research we want to use it to conduct selective reactions in microorganisms without disrupting the organism's native function."

Lin will be genetically constructing protein-based compartments within cells, segregated spaces inside of cells where selective, carbon-carbon bonds present in fuel molecules can be carried out via a series of metabolic cascade reactions. The result, they hope, will be a much more efficient method of converting carbohydrates to biofuel molecules, including ethanols and other long chain hydrocarbons, that will result in far higher yields.

"This is a brand new concept," says Lin. "We are trying to engineer a living 'factory,' a compartmentalized reaction vessel inside living cells. By putting all the necessary fuel-producing enzymes into this single, compartmentalized space in yeast, we hope that this engineered can start to churn out biofuels without in any way interfering with the yeast's native ."

Lin was awarded the Keck grant following his invitation to a National Academies Keck Futures Initiative conference on in which top researchers are brought together from around the U.S. to explore ways to advance interdisciplinary research. His initial work in this area was supported by the UB Interdisciplinary Research Development Fund.

Explore further: Heaven scent: Finding may help restore fragrance to roses

Related Stories

Cellular nanoscale drug delivery from the inside out

Mar 29, 2006

Delivering a dose of chemotherapy drugs to specific cancer cells without the risk of side affects to healthy cells may one day be possible thanks to a nanoscale drug delivery system being explored by researchers at the U.S. ...

Biotech offers promise for producing fuel

Aug 09, 2010

Fuel may be a messy business now, as the oil spill fouling the Gulf reminds us. But it might not always have to be. Scientists envision facilities that churn out black gold by enlisting engineered bacteria, yeast and algae ...

Recommended for you

Study on pesticides in lab rat feed causes a stir

Jul 02, 2015

French scientists published evidence Thursday of pesticide contamination of lab rat feed which they said discredited historic toxicity studies, though commentators questioned the analysis.

International consortium to study plant fertility evolution

Jul 02, 2015

Mark Johnson, associate professor of biology, has joined a consortium of seven other researchers in four European countries to develop the fullest understanding yet of how fertilization evolved in flowering plants. The research, ...

Making the biofuels process safer for microbes

Jul 02, 2015

A team of investigators at the University of Wisconsin-Madison and Michigan State University have created a process for making the work environment less toxic—literally—for the organisms that do the heavy ...

Why GM food is so hard to sell to a wary public

Jul 02, 2015

Whether commanding the attention of rock star Neil Young or apparently being supported by the former head of Greenpeace, genetically modified food is almost always in the news – and often in a negative ...

The hidden treasure in RNA-seq

Jul 01, 2015

Michael Stadler and his team at the Friedrich Miescher institute for Biomedical Research (FMI) have developed a novel computational approach to analyze RNA-seq data. By comparing intronic and exonic RNA reads, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.