Spectrum of young extrasolar planet yields surprising results

Sep 01, 2010
Keck II image of the young extrasolar planet HR 8799 b, seen as the point source in center of image. The bright light from the parent star HR 8799 is seen in background in yellow/red and has been removed in an annular region centered on the planet. Credit: Brendan Bowler and Michael Liu, IfA/Hawaii

(PhysOrg.com) -- Astronomers at the University of Hawaii have measured the temperature of a young gas-giant planet around another star using the W. M. Keck Observatory, and the results are puzzling. They have found that its atmosphere is unlike that of any previously studied extrasolar planet.

By obtaining a spectrum of its emitted light, the astronomers determined the temperature of the planet. As a result, they found that current theoretical models of gas-giant planets did a poor job of explaining all the data. The team suspects that the reason is dust in the planet’s atmosphere. Models with normal amounts of dust do not resemble this planet, but models with exceptionally thick dust clouds do a much better job. It therefore appears that young gas-giant planets are extremely cloudy.

“We are at a point where not only can we directly image planets around other stars, but we can begin to study the properties of their atmospheres in detail. Direct spectroscopy of exoplanets is the future of this field,” said Mr. Brendan Bowler, a graduate student at the University of Hawaii and the lead author of the study.

The planet, known as HR 8799 b, is one of three gas-giant planets orbiting the star HR 8799, located 130 light-years away from Earth in the constellation Pegasus. (For reference, the distance to the nearest nighttime star from Earth is about four light-years.) HR 8799 b is the lowest-mass planet around the star, about seven times the mass of Jupiter. This multiplanet system was discovered by direct imaging in 2008, and now, only a year and a half later, astronomers have obtained a spectrum of one of its planets. The spectrum of a planet contains much more information than a single image: it can reveal the temperature, , and cloud properties of the planet.

The technique the team used to determine the planet’s temperature relies on the chemistry of the planet’s atmosphere. Specifically, the presence or absence of gaseous methane can be used as a thermometer. The team found that HR 8799 b shows little or no methane in its atmosphere. Based on their spectrum and previously obtained images of the planet, and by comparing the observations to theoretical models of low-temperature atmospheres, they estimate the coolest possible temperature for the planet is about 1200 Kelvin (about 1,700 degrees Fahrenheit).

The models, however, did a poor job of reproducing all the data. Current predict HR 8799 b should be about 400 Kelvin cooler than they measured, based on the age of the planet and the amount of energy it is currently emitting. The team suspects the discrepancy arises because the planet is much more dusty and cloudy than expected by current models.

“Direct studies of extrasolar planets are just in their infancy. But even at this early stage, we are learning they are a different beast than objects we have known about previously,” said University of Hawaii astronomy professor Michael Liu, coauthor of the study.

The planets around HR 8799 are incredibly faint, about 100,000 times dimmer than their parent star. To obtain the spectrum of HR 8799 b, the team relied on the adaptive optics system of the Keck II Telescope to make an ultra-sharp image of the star for many hours. Then they used the Keck facility instrument called OSIRIS, a special kind of spectrograph, to precisely separate the spectrum of the planet from the light of its parent star.

“Adaptive optics systems on Keck and other large ground-based telescopes make sharper images than even the Hubble Space Telescope. With adaptive optics, we are learning an incredible amount about objects that are smaller than the lowest-mass stars and larger than the most massive gas-giant planets in our solar system,” said Mr. Trent Dupuy, a University of Hawaii graduate student and co-author on the study. Dr. Michael Cushing of the Jet Propulsion Laboratory was also a member of the team announcing these results.

Although over 500 planets have been discovered around other stars, only six planets have been directly imaged. Three of these are around HR 8799 and were discovered in 2008 by Christian Marois of Canada’s National Research Council and collaborators. When it was announced, the discovery represented one of the first direct image of light emitted from .

Explore further: What are extrasolar planets?

More information: A paper describing the study will be published in the Astrophysical Journal later this year. A copy is available here arxiv.org/abs/1008.4582

Related Stories

VLT captures first direct spectrum of an exoplanet

Jan 13, 2010

(PhysOrg.com) -- By studying a triple planetary system that resembles a scaled-up version of our own Sun’s family of planets, astronomers have been able to obtain the first direct spectrum -- the “chemical ...

Small, Ground-Based Telescope Images Three Exoplanets

Apr 14, 2010

(PhysOrg.com) -- Astronomers have snapped a picture of three planets orbiting a star beyond our own using a modest-sized telescope on the ground. The surprising feat was accomplished by a team at NASA's Jet ...

Hubble Finds Hidden Exoplanet in Archival Data

Apr 01, 2009

(PhysOrg.com) -- A powerful, newly refined image-processing technique may allow astronomers to discover extrasolar planets that are possibly lurking in over a decade's worth of Hubble Space Telescope archival ...

Recommended for you

What are extrasolar planets?

18 hours ago

For countless generations, human beings have looked out at the night sky and wondered if they were alone in the universe. With the discovery of other planets in our solar system, the true extent of the Milky ...

A curious family of giant exoplanets

19 hours ago

There are 565 exoplanets currently known that are as massive as Jupiter or bigger, about one third of the total known, confirmed exoplanet population. About one quarter of the massive population orbits very ...

Astrobiology students explore alien environment on Earth

19 hours ago

Sonny Harman never thought he'd be able to travel far enough to do field work. That's because the Penn State doctoral student studies atmospheres on other planets. But to his surprise, Harman recently stepped ...

NASA image: Hubble revisits tangled NGC 6240

19 hours ago

Not all galaxies are neatly shaped, as this new NASA/ESA Hubble Space Telescope image of NGC 6240 clearly demonstrates. Hubble previously released an image of this galaxy back in 2008, but the knotted region, shown ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Sep 01, 2010
Its only going to get stranger and stranger.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.