Scientists decode genomes of sexually precocious fruit flies

Sep 16, 2010
Control group fruit flies including a female, left, and male, right, are seen through a micrcoscope. UCI researchers concluded that sexual species do not evolve the way simple bacteria do. Image: Steve Zylius / University Communications

(PhysOrg.com) -- UC Irvine researchers have deciphered how lowly fruit flies bred to rapidly develop and reproduce actually evolve over time. The findings, reported in the Sept. 15 online issue of Nature, contradict the long-held belief that sexual beings evolve the same way simpler organisms do and could fundamentally alter the direction of genetic research for new pharmaceuticals and other products.

"This is actually decoding the key DNA in the evolution of aging, development and fertility," said ecology & evolutionary biology professor Michael Rose, whose laboratory began breeding the "super flies" used in the current study in 1991 - or 600 generations ago. He joked that they "live fast and die young."

Lead author and doctoral student Molly Burke compared the super flies to a control group on a genome-wide basis, the first time such a study of a sexually reproducing species has been done. The work married DNA "soup" gathered from the adapted flies with cheap, efficient technology that uses cutting-edge informatics tools to analyze the DNA of entire organisms. Burke found evidence of in more than 500 genes that could be linked to a variety of traits, including size, sexual maturation and life span, indicating a gradual, widespread network of selective adaptation.

"It's really exciting," she said. "This is a new way of identifying genes that are important for traits we're interested in - as opposed to the old hunting and pecking, looking at one gene at a time."

For decades, most researchers have assumed that sexual species evolve the same way single-cell bacteria do: A genetic mutation sweeps through a population and quickly becomes "fixated" on a particular portion of . But the UCI work shows that when sex is involved, it's far more complicated.

"This research really upends the dominant paradigm about how species evolve," said ecology & evolutionary biology professor Anthony Long, the primary investigator.

Based on that flawed paradigm, Rose noted, drugs have been developed to treat diabetes, heart disease and other maladies, some with serious side effects. He said those side effects probably occur because researchers were targeting single genes, rather than the hundreds of possible gene groups like those Burke found in the flies.

Most people don't think of flies as close relatives, but the UCI team said previous research had established that humans and other mammals share 70 percent of the same genes as the tiny, banana-eating insect known as Drosophila melanogaster.

Scientists who did not participate in the work agreed that it could change the direction of much research. "Anyone who expects to find a single solution for problems like aging will be disappointed, because this work suggests there's no one genetic target that could be fixed," said Richard Lenski, an evolutionary biologist at Michigan State University. "On the other hand, it means there are many genetic factors that can be further investigated."

Explore further: Heaven scent: Finding may help restore fragrance to roses

Related Stories

Study: Junk DNA is critically important

Oct 19, 2005

A University of California-San Diego scientist says genetic material derisively called "junk" DNA is important to an organism's evolutionary survival.

Picky-eater Flies Losing Smell Genes

Apr 02, 2007

A UC Davis researcher is hot on the scent of some lost fruit fly genes. According to population biology graduate student Carolyn McBride, the specialist fruit fly Drosophila sechellia is losing genes for smell and taste receptors ...

Human aging gene found in flies

May 12, 2008

Scientists funded by the Biotechnology and Biological Sciences Research Council (BBSRC) have found a fast and effective way to investigate important aspects of human ageing. Working at the University of Oxford and The Open ...

Recommended for you

Study on pesticides in lab rat feed causes a stir

Jul 02, 2015

French scientists published evidence Thursday of pesticide contamination of lab rat feed which they said discredited historic toxicity studies, though commentators questioned the analysis.

International consortium to study plant fertility evolution

Jul 02, 2015

Mark Johnson, associate professor of biology, has joined a consortium of seven other researchers in four European countries to develop the fullest understanding yet of how fertilization evolved in flowering plants. The research, ...

Making the biofuels process safer for microbes

Jul 02, 2015

A team of investigators at the University of Wisconsin-Madison and Michigan State University have created a process for making the work environment less toxic—literally—for the organisms that do the heavy ...

Why GM food is so hard to sell to a wary public

Jul 02, 2015

Whether commanding the attention of rock star Neil Young or apparently being supported by the former head of Greenpeace, genetically modified food is almost always in the news – and often in a negative ...

The hidden treasure in RNA-seq

Jul 01, 2015

Michael Stadler and his team at the Friedrich Miescher institute for Biomedical Research (FMI) have developed a novel computational approach to analyze RNA-seq data. By comparing intronic and exonic RNA reads, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.