New process promises to revolutionize manufacturing of products

Sep 01, 2010

A new "smart materials" process - Multiple Memory Material Technology - developed by University of Waterloo engineering researchers promises to revolutionize the manufacture of diverse products such as medical devices, microelectromechanical systems (MEMS), printers, hard drives, automotive components, valves and actuators.

The breakthrough technology will provide engineers with much more freedom and creativity by enabling far greater functionality to be incorporated into medical devices such as stents, braces and hearing aids than is currently possible.

Smart materials, also known as , have been around for several decades and are well known for their ability to remember a pre-determined .

Traditional memory materials remember one shape at one temperature and a second shape at a different temperature. Until now they have been limited to change shape at only one temperature. Now with the new Waterloo technology they can remember multiple different memories, each one with a different shape.

"This ground-breaking technology makes smart materials even smarter," said Ibraheem Khan, a research engineer and graduate student working with Norman Zhou, a professor of mechanical and mechatronics engineering. "We have developed a technology that embeds several memories in a monolithic smart material. In essence, a single material can be programmed to remember more shapes, making it smarter than previous technologies."

The patent pending technology, which is available for licensing, allows virtually any memory material to be quickly and easily embedded with additional local memories.

The transition zone area can be as small as a few microns in width with multiple zones, each having a discrete . As the processed shape memory material is subject to changing temperature, each treated zone will change shape at its respective transition temperature. As well, transition zones created side-by-side allow for a unique and smooth shape change in response to changing temperature.

Several prototypes have been developed to demonstrate this pioneering technology.

One mimics a transformer robot. The robot's limbs transform with increasing temperature at discrete temperatures, whereas in conventional shape memory technology this is limited to only one transformation temperature.

This video is not supported by your browser at this time.
A video demonstrating the miniature robot.


Explore further: Engineering students create real-time 3-D radar system

Related Stories

Polymer remembers four shapes

Mar 15, 2010

(PhysOrg.com) -- A new study by General Motors has found that a polymer used commercially in fuel cell membranes can "memorize" four shapes, each assigned to a different temperature. The material could find ...

How shape-memory materials remember

Apr 26, 2010

X-ray studies and fundamental calculations are helping physicists gain molecular level insight into the workings of some magnetic shape-memory materials, which change shape under the influence magnetic fields.

Design tool for materials with a memory

Jul 13, 2009

Shape memory alloys can "remember" a condition. If they are deformed, a temperature change can be enough to bring them back to their original shape. A simulation calculates the characteristics of these materials.

Smart memory foam made smarter

Sep 24, 2009

Researchers from Northwestern University and Boise State University have figured out how to produce a less expensive shape-shifting "memory" foam, which could lead to more widespread applications of the material, such as ...

Precision control of movement in robots

May 16, 2008

A research team from the Department of Electricity and Electronics at the University of the Basque Country’s Faculty of Science and Technology in Leioa, Spain, led by Victor Etxebarria, is investigating the characteristics ...

Recommended for you

Engineering students create real-time 3-D radar system

7 hours ago

Spencer Kent stands nervously in front of Team D.R.A.D.I.S.' booth at Rice University's annual Engineering Design Showcase. Judging begins in about 10 minutes, and his teammate Galen Schmidt is frantically ...

New research to realise the sensor 'pipe dream'

14 hours ago

Three new research projects funded by Australia's energy pipeline industry have been initiated at Deakin University. The projects aim to develop a world-first pipeline health monitoring system that will be ...

Economical and effective security design

16 hours ago

Operators of infrastructures such as power grids and airports are expected to ensure a high level of security – but their financial means are limited. Fraunhofer researchers have developed an analysis tool ...

Ten-engine electric plane prototype takes off

16 hours ago

A team at NASA's Langley Research Center is developing a concept of a battery-powered plane that has 10 engines and can take off like a helicopter and fly efficiently like an aircraft. The prototype, called ...

FAA's Airworthiness Directive issued to avoid power loss

May 02, 2015

A fix for a software problem that could possibly result in power loss in Boeing 787s has been ordered. Federal Aviation Administration officials adopted a new airworthiness directive (AD), effective as of ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.