NASA uses new method to estimate earth mass movements

September 14, 2010
Global present-day trends in the transport of water mass around Earth, as determined using data from GRACE, surface measurements and an ocean model. Darker areas represent greater loss of mass. Image credit: NASA-JPL/-Caltech

NASA and European researchers have conducted a novel study to simultaneously measure, for the first time, trends in how water is transported across Earth's surface and how the solid Earth responds to the retreat of glaciers following the last major Ice Age, including the shifting of Earth's center of mass.

To calculate the changes, scientists at NASA's Jet Propulsion Laboratory, Pasadena, Calif.; Delft University of Technology, Delft, Netherlands; and the Netherlands Institute for Space Research, Utrecht, Netherlands, combined gravity data from the NASA/German Aerospace Center Gravity Recovery and Climate Experiment satellites with direct measurements of global surface movements from GPS and other sources and a JPL-developed model that estimates the of Earth's ocean above any point on the ocean floor. Results are reported in the September issue of Nature Geoscience.

Using the new methodology, the researchers, led by Xiaoping Wu of JPL, calculated new estimates of ice loss in Greenland and Antarctica that are significantly smaller than previous estimates. According to the team's estimates, mass losses between 2002 and 2008 measured 104 (plus or minus 23) gigatonnes a year in Greenland, 101 (plus or minus 23) gigatonnes a year in Alaska/Yukon, and 64 (plus or minus 32) gigatonnes a year in West Antarctica. A gigatonne is one billion metric tons, or more than 2.2 trillion pounds. The smaller but significant ice loss estimates reflect the revised role that post-glacial rebound was found to play in relation to current ice mass loss in Greenland and . Post-glacial rebound (known as glacial isostatic adjustment) is the response of the solid Earth to the retreat of glaciers following the last Ice Age. After the weight of ice from the land surface was removed, the land under the ice rose and continues to slowly rise.

In addition, the team found that the shift of water mass around the globe, combined with the post-glacial rebound of Earth's surface, is shifting Earth's surface relative to its center of mass by 0.88 millimeters (.035 inches) a year toward the North Pole. The estimate of the shift due to rebound-0.72 millimeters (.028 inches) per year--is believed to be the first estimate based on actual data, rather than a model prediction.

Wu said the shift of Earth's surface is due primarily to the melted Laurentide ice sheet, which blanketed most of Canada and a part of the northern United States around 21,000 years ago. "The new estimate of shift is much larger than previous model estimates of 0.48 millimeters [.019 inches] per year," said Wu. "This suggests that either Earth's lower mantle must be much more viscous than previously believed, or that the history of Earth's deglaciation needs to be significantly revised."

Wu said previous GRACE-based estimates of the movement of mass at Earth's surface have been calculated by correcting the data using a post-glacial rebound model, while estimates of post-glacial rebound itself have been estimated using a hydrological model. These models are not as precise as the geodetic data, however, and contain unknown and potentially large errors that will throw off estimates of the other process.

GRACE project scientist Michael Watkins of JPL, who was not an author on the paper, said that although some of the new results, such as those for Greenland, are surprising, they are not due to a reanalysis of GRACE or GPS data alone. Rather, they are a result of the simultaneous use of GRACE, GPS and other geodetic measurements to help objectively sort out the relative sizes of post-glacial rebound and present-day mass loss. "Both the GPS and gravity measurements are accurate on their own, but untangling the relative contributions of the two processes as observed by satellites is difficult. This technique provides a first global attempt at doing that," Watkins said.

"The Earth system is so complex that measuring and understanding it requires scientists to combine observations from as many satellites and ground-based measurements as possible," Watkins added. "With each new study like this one, we learn more and more about how to conduct future studies and interpret their data. The more data, and different types of data we collect, the better we'll be able to answer fundamental questions about how our planet works."

Explore further: Gravity Measurements Help Melt Ice Mysteries

Related Stories

Gravity Measurements Help Melt Ice Mysteries

March 26, 2007

Greenland is cold and hot. It's a deep freezer storing 10 percent of Earth's ice and a subject of fevered debate. If something should melt all that ice, global sea level could rise as much as 7 meters (23 feet). Greenland ...

Scientist Finds a New Way to the Center of the Earth

June 12, 2007

Humans have yet to see Earth's center, as did the characters in Jules Verne's science fiction classic, "Journey to the Center of the Earth." But a new NASA study proposes a novel technique to pinpoint more precisely the location ...

Climate: New study slashes estimate of icecap loss

September 7, 2010

Estimates of the rate of ice loss from Greenland and West Antarctica, one of the most worrying questions in the global warming debate, should be halved, according to Dutch and US scientists.

Antarctic ice loss speeds up, nearly matches Greenland loss

January 24, 2008

Ice loss in Antarctica increased by 75 percent in the last 10 years due to a speed-up in the flow of its glaciers and is now nearly as great as that observed in Greenland, according to a new, comprehensive study by UC Irvine ...

Recommended for you

Increasing tornado outbreaks—is climate change responsible?

December 1, 2016

Tornadoes and severe thunderstorms kill people and damage property every year. Estimated U.S. insured losses due to severe thunderstorms in the first half of 2016 were $8.5 billion. The largest U.S. impacts of tornadoes result ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.