New microfluidic chip for discriminating bacteria

Sep 14, 2010

A new "on-chip" method for sorting and identifying bacteria has been created by biomedical engineers at Taiwan's National Cheng Kung University. The technique, developed by Hsien-Chang Chang, a professor at the Institute of Biomedical Engineering and the Institute of Nanotechnology and Microsystems Engineering, along with former graduate student I-Fang Cheng and their colleagues, is described in the AIP journal Biomicrofluidics.

Using roughened glass slides patterned with gold electrodes, the researchers created microchannels to sort, trap, and identify . The technique uses surface enhanced Raman spectroscopy. This type of spectroscopy, says Chang, "is based on the measurement of scattered light from the vibration energy levels of following excitation in a craggy , which enhances the vibration energy." Different components like proteins or other chemical components on the surface of bacteria become attached to the craggy gold zone; when excited, these components cause representative peaks at different wavelengths, creating spectral "fingerprints."

Although some species of bacteria could show very similar signatures because the components on their surfaces are almost the same, says Chang, bacteria from different genera are distinguishable using the technique.

"In the future, different species of fungi could also be sorted based on their different electrical or physical properties by optimizing conditions such as the flow rate, applied voltage, and frequency," he says. "This portable device could be used for preliminary screening for the pathogenic targets in bacteria-infected blood, urethral irritation, and of and for food monitoring."

Explore further: Thermometer-like device could help diagnose heart attacks

More information: The article, " A dielectrophoretic chip with a roughened metal surface for on-chip SERS analysis of bacteria" by I-Fang Cheng (National Cheng Kung University), Chi-Chang Lin (Tunghai University), Dong-Yi Lin and Hsien-Chang Chang (National Cheng Kung University) appears in the journal Biomicrofluidics. link.aip.org/link/biomgb/v4/i3/p034104/s1

Related Stories

NRL Develops Technique To Speed Detection Process

Feb 15, 2010

(PhysOrg.com) -- Researchers at the Naval Research Laboratory are developing a device to enable rapid detection and identification of bacteria, chemicals, and explosives in the environment or on the battlefield.

Researcher Develops Sensor to Detect E.coli

Sep 24, 2006

As the Food and Drug Administration takes days to track down the source of the E. coli outbreak, Dr. Raj Mutharasan is optimizing a sensor that can enable growers to do the job themselves in a few minutes.

Researchers develop technique for bacteria crowd control

Apr 17, 2007

A surprising technique to concentrate, manipulate, and separate a wide class of swimming bacteria has been identified through a collaboration between researchers at Argonne National Laboratory, Illinois Institute ...

Recommended for you

Thermometer-like device could help diagnose heart attacks

11 hours ago

Diagnosing a heart attack can require multiple tests using expensive equipment. But not everyone has access to such techniques, especially in remote or low-income areas. Now scientists have developed a simple, ...

Automated counting of tumor cells in blood

May 04, 2015

Biological and medical scientists have been using flow cytometry to count cancer cells for the past 40 years. But the large instruments are expensive and can only be operated by trained personnel. By contrast ...

A phone with the ultimate macro feature

Apr 29, 2015

If you thought scanning one of those strange, square QR codes with your phone was somewhat advanced, hold on to your seat. Researchers at the University of California, Los Angeles (UCLA) have recently developed ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.