Water around massive young stars

September 16, 2010
An infrared image of the DR21 outflow region as seen by the Spitzer Space Telescope. New observations study the water in this outflow as well as in the dark gas clouds. Credit: NASA, Spitzer, Smith & Hora

Water is critical to human life, but also plays an important role in the life of stars and their planetary systems. As a gas, water helps to cool collapsing clouds of interstellar material so that they can form new stars.

In the form of ice, water acts as a glue on to help them coagulate into planetesimals and then into planets around the new . Finally, liquid water transports molecules on planetary surfaces, helping bring them together for complex chemistry.

Astronomers are actively looking for water in the cosmos, measuring its abundance, temperature and other properties, and trying to understand why it is found in some places but not others. In 1998, a NASA team led by SAO astronomers launched a space mission to study water in space, the Submillimeter Wave Astronomy Satellite (SWAS). SWAS found water nearly everywhere it looked, but also found a puzzle: there was less of it (in relation to other molecules) than had been expected. One proposed solution was that considerable amounts of water are frozen out onto the surfaces of cold grains of dust.

SAO astronomers Gary Melnick and Tim van Kempen were members of a large team who used the Herschel Space Observatory to study water around young, high mass stars. Herschel has much finer spatial resolution than did SWAS, and so is better able to distinguish the locations of the water in the complex regions around massive young stars that typically include dense central cores, outflows, and also foreground .

Their first paper on this program, about a young star in the constellation of Cygnus, reports that the water abundance in the cold core around the star is very low, supporting the idea that much of it is frozen as ice, and that the associated outflow (which has dust warmed to over 200 degrees kelvin) contains more than a thousand times as much water. The results are the first in series expected to refine our understanding of the roles plays in star and .

Explore further: Two unusual older stars giving birth to second wave of planets

Related Stories

How water forms where Earth-like planets are born

December 17, 2009

(PhysOrg.com) -- In a study that helps to explain the origins of water on Earth, University of Michigan astronomers have found that water vapor can form spontaneously in habitable zones of solar systems, and that it develops ...

Solar System Shield

January 14, 2010

Water vapor in planet-forming disks may block ultraviolet radiation from destroying water and other important molecules for life, according to new calculations.

Pin-pointing water in space

February 26, 2010

(PhysOrg.com) -- Water is regarded as a key ingredient for life - and water exists plenty in the universe. Now scientists have found the precious element in a disk around a young star, similar to our Sun. This disk, supposedly ...

Herschel finds a hole in space

May 11, 2010

(PhysOrg.com) -- ESA's Herschel infrared space telescope has made an unexpected discovery: a hole in space. The hole has provided astronomers with a surprising glimpse into the end of the star-forming process.

Recommended for you

NASA's space-station resupply missions to relaunch

November 29, 2015

NASA's commercial space program returns to flight this week as one of its private cargo haulers, Orbital ATK, is to launch its first supply shipment to the International Space Station in more than 13 months.

The hottest white dwarf in the Galaxy

November 25, 2015

Astronomers at the Universities of Tübingen and Potsdam have identified the hottest white dwarf ever discovered in our Galaxy. With a temperature of 250,000 degrees Celsius, this dying star at the outskirts of the Milky ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1.5 / 5 (2) Sep 17, 2010
Water is most abundant in the material that formed giant gaseous planets, far from the proto-Sun.

If other stars formed in a similar fashion, then there would be little or no water in the inner iron-rich material close to the young star.

With kind regards,
Oliver K. Manuel
Former NASA Principal
Investigator for Apollo

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.