Research could improve detection of liver damage

September 17, 2010

Research at the University of Liverpool could lead to faster and more accurate diagnoses of liver damage.

The team used paracetamol as the basis for the study: research indicates that paracetamol can place temporary stress on the liver in around a third of people who take a normal dose (4g per day) but the liver returns to normal when the drug has left the system. Overdoses of the drug are a major cause of in both the UK and US.

Scientists have discovered that the presence of specific proteins in the blood are indicative of early liver cell damage and can determine the point at which cell death occurred, the type of cell death, and the extent of any damage. This could lead to being assessed faster and more accurately in the future - information which could prove valuable when treating people following drug overdoses.

The current blood test used by clinicians to assess simply indicates whether liver enzymes leaking from dying cells can be detected in the blood. The test is not always reliable because positive results are often, but not always, an indicator of serious underlying liver problems.

Scientists induced a mild paracetamol overdose in mice and discovered that proteins released by cells in the liver - HMGB1 and keratin 18 - provided a detailed picture of the level of cell damage. The release of HMGB1 was associated with necrosis - a process in which a cell bursts and dies - while the release of different types of keratin 18 was associated with both - a process of normal cell renewal - and necrosis. This latter combination of both types of is significantly less traumatic for the liver than alone in paracetamol overdose.

Pharmacologist, Dr Dominic Williams, from the University's Medical Research Council Centre for Drug Safety Science, said: "The findings are significant because knowing how the cells die will allow development of medicines to help them survive, and may also distinguish patients who have severe injury and require intensive care from those who have mild injury.

"The research has implications for determining how much stress has been placed on the liver in patients who are worried about an accidental overdose, as well as the more serious overdose cases."

Explore further: Researchers identify critical receptor in liver regeneration

More information: The research is published in Molecular Medicine.

Related Stories

Researchers identify critical receptor in liver regeneration

March 29, 2007

In studies in mouse models, researchers at the University of California, San Diego (UCSD) School of Medicine have found that a cellular receptor involved in triggering cell death is also a necessary component of tissue repair ...

Toxic bile damages the liver

October 24, 2008

Researchers at the Heidelberg University Hospital have discovered a new genetic disease that can lead to severe liver damage. Because a protective component of the bile is missing, the liver cells are exposed to the toxic ...

How did glycine significantly decrease liver injury?

October 31, 2008

The nonessential amino acid glycine has been shown to be anti-inflammatory in several animal injury models. Recent studies demonstrated that dietary glycine protected both the lung and liver against lethal doses of endotoxin ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.