New insight into 'accelerated aging' disease

Sep 13, 2010

Hutchinson-Gilford Progeria Syndrome (HGPS or progeria) is a rare genetic disease that causes young children to develop symptoms associated with advanced age, such as baldness, wrinkles, osteoporosis and cardiovascular disease. Now, a study published by Cell Press in the September 14th issue of the journal Developmental Cell uses a mouse model to shed light on progeria, and perhaps also on the normal aging process.

Progeria is caused by a mutation in the gene for lamin A that leads to production of "progerin", a truncated form of the lamin A protein that causes the to become misshapen. "How progerin causes progeria and whether it contributes to the normal aging process are areas of intense speculation," says senior study author, Dr. Colin L. Stewart from the Institute of Medical Biology in Singapore.

Dr. Stewart and colleagues had previously developed a for progeria. In the current study, they showed that the mutation associated with their mouse model produces a progerin-like truncation of lamin A and causes post-natal connective tissue cells to stop producing an extracellular matrix. The lack of this surrounding matrix then causes the cells to stop dividing and to die. However, the researchers did not see the same effects when they studied . This difference between pre-natal and post-natal effects on cell behavior in the is significant because children with progeria appear normal at birth but develop signs of accelerated aging soon after, often dying from heart disease while they are still in their teens.

The researchers go on to show that the defects in the extracellular matrix in mouse and human progeria cells are due to abnormalities in a protein network called the . "Our results provide support for the hypothesis that progeria is a disease of the connective tissue which manifests as abnormalities in the skeleton, teeth, skin and vasculature," concludes Dr. Stewart. "If these failures are due to defective Wnt signaling and/or cytoskeletal-extracellular matrix function, they suggest possible new routes of intervention that may help in treating this disease."

As there is also evidence for defective lamin production in the vascular system during the normal aging process, the researchers are keen to explore potential implications of their new findings in these and other aspects of both progeria and normal aging.

Explore further: Premature aging: Scientists identify and correct defects in diseased cells

Related Stories

Lamin B locks up Oct-1

Jan 12, 2009

A large fraction of the transcription factor Oct-1 is associated with the inner nuclear envelope, but how and why it is retained there was unknown.

Recommended for you

Why you need one vaccine for measles and many for the flu

18 hours ago

While the influenza virus mutates constantly and requires a yearly shot that offers a certain percentage of protection, old reliable measles needs only a two-dose vaccine during childhood for lifelong immunity. ...

Scientists turn blood into neural cells

18 hours ago

Scientists at McMaster University have discovered how to make adult sensory neurons from human patients simply by having them roll up their sleeve and providing a blood sample.

How our gut changes across the life course

21 hours ago

Scientists and clinicians on the Norwich Research Park have carried out the first detailed study of how our intestinal tract changes as we age, and how this determines our overall health.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.