New model may simplify high-dose radiosurgery planning

September 2, 2010

There is yet no straightforward way to determine the optimal dose level and treatment schedules for high-dose radiation therapies such as stereotactic radiation therapy, used to treat brain and lung cancer, or for high-dose brachytherapy for prostate and other cancers.

Radiation oncologists at the Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC-James) may have solved the problem by developing a new mathematical model that encompasses all dose levels.

Typically, radiation therapy for cancer is given in daily, low doses spread over many weeks. Oncologists often calculate the schedules for these fractionated, low-dose treatment courses using a called the linear-quadratic (LQ) Model. The same calculation model is used to evaluate radiation response, interpret clinical data and guide clinical trials.

"Unfortunately the LQ Model doesn't work well for high-dose radiation therapy," says co-author Dr. Nina Mayr, professor of at the OSUCCC-James. "Our study resolves this problem by modifying the current method to develop the Generalized LQ (gLQ) Model that covers all dose levels and schedules."

If verified clinically, the Generalized gLQ Model could guide the planning of dose and schedules needed for the newer and stereotactic and high-dose brachytherapy procedures that are increasingly used for cancer patients, she says.

"Developing proper schedules for these promising high-dose treatments is very challenging," Mayr says. "Typically, it involves phase I dose-finding studies and a long, cumbersome process that allows only gradual progression from the pre-clinical and clinical trial stages to broader clinical practice."

The new gLQ Model could allow oncologists to design radiation dose schedules more efficiently, help researchers conduct clinical trials for specific cancers more quickly and make these high-dose therapies available to cancer patients much sooner, Mayr says.

Fractionated low-dose therapy causes cumulative damage to tumor cells during the many weeks of exposure, while causing minimal damage to hardier normal cells. Patients, however, must return repeatedly to the hospital for many weeks to complete their treatment.

High-dose therapy has become possible because of advances in computer and radiation technology. It uses multiple beams of radiation that conform tightly to a tumor's shape. They converge on the cancer to deliver higher total radiation levels, while sparing normal tissues. This kills more tumor cells per treatment, so far fewer treatments are needed overall.

The new study, published recently in the journal Science Translational Medicine, tested the gLQ Model in cell and animal models, and is expected to be evaluated soon in clinical trials.

"Our Generalized LQ Model determines appropriate radiation levels across the entire wide spectrum of doses, from low and high, and from many to very few treatments, which is a new approach," Mayr says.

Explore further: Lower-dose fractionated stereotactic radiotherapy results in better hearing preservation

Related Stories

High-dose radiation improves lung cancer survival

April 8, 2009

Higher doses of radiation combined with chemotherapy improve survival in patients with stage III lung cancer, according to a new study by researchers at the University of Michigan Comprehensive Cancer Center.

ASTRO releases SBRT for lung cancer report

April 28, 2010

The American Society for Radiation Oncology (ASTRO) has released its Emerging Technology Committee's report evaluating the use of stereotactic body radiotherapy (SBRT) in lung cancer treatment.

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.