Harnessing the potential of the oddly-shaped molecule

September 22, 2010

Scientists at The University of Nottingham have made a discovery that could hold important implications for harnessing the potential of a single molecule at the nanoscale.

In a paper published in the journal Nature Communications, a team of physicists and chemists have demonstrated for the first time the way in which an irregularly shaped molecule is adsorbed on a surface.

It gives important information to scientists on how these molecules could be arranged to form structures, potentially to build tiny new devices which are 40 to 50 times smaller than their existing silicon-based counterparts.

The research was led by Professor Peter Beton from the Nanoscience group in the University’s School of Physics and Astronomy in collaboration with Neil Champness, Professor of Chemical Nanoscience in the School of Chemistry.

Professor Champness said: “The majority of work done in this area has focussed on symmetrically-shaped molecules, for example molecules which are square or spherical. The properties and behaviour of these molecules are comparatively easy for us to predict and understand.

“However, only a very small percentage of molecules are symmetrically-shaped and confining our use to those because they are better understood can be seriously constraining.

“Many of the more irregularly-shaped molecules have extremely useful properties — if we can store information on a single molecule which is normally around one nanometer, as opposed to the silicon-based equivalent of 40 to 50 , we could potentially build devices which are much smaller in size but have a much denser .”

The work has involved computer modelling a manganese-based molecule — shaped like a concave ‘jam doughnut’ — and predicting how it would be adsorbed on a gold surface before observing its actual behaviour in the lab. Due to the fragile nature of the molecules, the team had to use a novel electrospray deposition technique to get the molecules onto the surface without destroying their functionality.

The work builds on previous research by the team which was published by Nature back in 2003, where they demonstrated they could trap molecules in a honeycomb-like structure, similar to an egg box, to control the way in which interact with each other and to build more effectively ordered molecular arrays.

The latest research has been supported by the European Community — Research Infrastructure Action, the Engineering and Physical Sciences Research Council (EPSRC) and the European Commission Early Stage Research Training Network, MONET.

Explore further: An important step toward molecular electronics

More information: The full paper, Self-Assembled Aggregates Formed by Single-Molecule Magnets on a Gold Surface, can be accessed on the Nature Communications website at www.nature.com/ncomms .

Related Stories

An important step toward molecular electronics

September 27, 2004

Silicon microelectronics has undergone relentless miniaturization during the past 30 years, leading to dramatic improvements in computational capacity and speed. But the end of that road is fast approaching, and scientists ...

In touch with molecules

November 12, 2009

The performance of modern electronics increases steadily on a fast pace thanks to the ongoing miniaturization of the utilized components. However, se-vere problems arise due to quantum-mechanical phenomena when conven-tional ...

Recommended for you

Physicists develop new technique to fathom 'smart' materials

November 26, 2015

Physicists from the FOM Foundation and Leiden University have found a way to better understand the properties of manmade 'smart' materials. Their method reveals how stacked layers in such a material work together to bring ...

Mathematicians identify limits to heat flow at the nanoscale

November 24, 2015

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can ...

New sensor sends electronic signal when estrogen is detected

November 24, 2015

Estrogen is a tiny molecule, but it can have big effects on humans and other animals. Estrogen is one of the main hormones that regulates the female reproductive system - it can be monitored to track human fertility and is ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.