Functional motor neuron subtypes generated from embryonic stem cells

September 2, 2010

Scientists have devised a method for coaxing mouse embryonic stem cells into forming a highly specific motor neuron subtype. The research, published by Cell Press in the September 3rd issue of the journal Cell Stem Cell, provides new insight into motor neuron differentiation and may prove useful for devising and testing future therapies for motor neuron diseases.

Motor neurons in the spinal cord communicate with other neurons in the and send long projections out to muscles, transmitting signals that are essential for proper control of movement and posture. Like other neuron classes, motor neurons are known to exhibit tremendous diversity. "The existence of dozens of muscle groups in the limbs of most mammals demands an equivalent diversity of motor neuron pool subtypes," explains the senior study author, Dr. Hynek Wichterle from Columbia University in New York.

During normal development, motor neurons settle into specific sections of the (called columns), which correspond to the muscles that they will innervate. For example, cells in one area link up with muscles in the limbs, while cells residing in another region innervate muscles in the body wall. Although previous studies have shown that mouse and human can be converted into motor neurons, it was not clear whether these were "generic" neurons or whether they could acquire characteristics of the specific specialized subtypes.

In the current study, lead author Dr. Peljto and colleagues showed that removing a key differentiation factor allowed cultured embryonic stem cells to form motor neurons with molecular characteristics corresponding to a limb innervating subtype, without the need for or added factors. Importantly, when this stem cell-derived subtype was transplanted into embryonic chick spinal cords, the motor neurons settled in the expected columnar position within the cord and had projections that mimicked the trajectory of limb innervating motor neurons.

Although encouraging from a regenerative medicine perspective, the authors caution that due to differences in limb and wing musculature, their mouse-to-chick transplantation paradigm makes it impossible to determine whether generated in the lab exhibit subtype specific connectivity with limb muscles. However, this method for reliably generating defined motor neuron subtypes may prove to be invaluable for future disease modeling studies.

"Motor neuron subtypes exhibit differential susceptibility to neurodegeneration in two prominent motor neuron diseases, Amyotrophic Lateral Sclerosis (ALS) and Spinal Muscular Atrophy (SMA)," says Dr. Wichterle. "The ability to drive the differentiation of embryonic stem cells into disease-sensitive and -resistant motor neuron subtypes could help to uncover new therapeutic strategies."

Explore further: Neurons grown from embryonic stem cells restore function in paralyzed rats

Related Stories

Mixing and matching genes to keep nerve cells straight

June 9, 2008

With fewer than 30,000 human genes with which to work, Nature has to mix and match to generate the myriad types of neurons or nerve cells needed to assemble the brain and nervous system. Keeping this involved process on the ...

Researchers generate functional neurons from somatic cells

February 24, 2009

In a new study, researchers were able to generate functionally mature motor neurons from induced pluripotent stem (iPS) cells, which are engineered from adult somatic cells and can differentiate into most other cell types. ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.