Elpida develops industry's smallest 30nm process 2-Gigabit DDR3 SDRAM

September 29, 2010

Elpida Memory, Inc., Japan's global supplier of Dynamic Random Access Memory (DRAM), today announced that it had completed development of a 30nm process 2-gigabit DDR3 SDRAM.

The new 2-gigabit DDR3 SDRAM used 30nm-level advanced process migration technology to create the DRAM industry's smallest-level 2-gigabit DDR3 SDRAM. It achieves 45% more chips per wafer compared with Elpida's 40nm process products. Also, the new process design developed by Elpida will help contain rising chip costs associated with process migration. As a result, the 2-gigabit DDR3 is slated to become an extremely cost-competitive product.

Elpida's new chip meets the JEDEC specs for the high-speed DDR3-1866 and 1.35V low-voltage, high-speed DDR3L-1600 , both expected to become mainstream industry products in 2011. Also, the 30nm DDR3 SDRAM is eco-friendly. As a DDR3 SDRAM it achieves one of the industry's lowest levels of electric current usage (approximately 15% less operating and approximately 10% less standby usage compared with Elpida's 40nm products), which contributes to lower PC and digital consumer electronics .

Elpida plans to begin sample shipments of the newly developed DDR3 SDRAM in December 2010. Volume production is expected to commence in the same month.

Elpida will apply the new 30nm process technology to its Mobile RAM products. The company also plans to use the process together with Through Silicon Via (TSV) technology to support one-chip memory solutions for mobile phones, digital still cameras and PC DRAMs.

Explore further: Elpida Develops Top-Tier Power Efficient 2Gbps High-Speed DDR3 SDRAM

Related Stories

Elpida Completes Development of 50nm Process DDR3 SDRAM

November 26, 2008

Elpida Memory, Japan's leading global supplier of Dynamic Random Access Memory (DRAM), today announced that it has completed development of a 50nm process DDR3 SDRAM. The new DRAM product features the lowest power consumption ...

Elpida Begins Mass Production of 40nm 2-Gigabit DDR3 SDRAM

December 22, 2009

Elpida Memory, Japan's leading global supplier of Dynamic Random Access Memory (DRAM), today announced that its Hiroshima Plant has begun volume production of 40nm process 2-gigabit DDR3 SDRAMs. Since completing development ...

Recommended for you

Tech leaders warn over 'killer robots' (Update)

July 28, 2015

A group of top tech leaders, including British scientist Stephen Hawking and Apple co-founder Steve Wozniak, on Tuesday issued a stern warning against the development of so-called killer robots.

Software turns smartphones into tools for medical research

July 27, 2015

Jody Kearns doesn't like to spend time obsessing about her Parkinson's disease. The 56-year-old dietitian from Syracuse, New York, had to give up bicycling because the disorder affected her balance. But she still works, drives ...

Where is solar power headed?

July 22, 2015

Most experts agree that to have a shot at curbing the worst impacts of climate change, we need to extricate our society from fossil fuels and ramp up our use of renewable energy.

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Quantum_Conundrum
5 / 5 (2) Sep 29, 2010
What gives?

Based on simple geometry, they should have been able to fit about 77.77% more chips per wafer...

Is the 32.72% discrepancy represented entirely by circuitry for buses and power supply of the chips?

It would seem that the transistors are miniaturizing faster than the wiring, and that moreover, the law of large numbers is at play because the wires and other "logic" and power is taking up a higher and higher percentage of the chip's area and volume as compared to individual transistors.
plasma_guy
5 / 5 (1) Oct 10, 2010
What gives?

Based on simple geometry, they should have been able to fit about 77.77% more chips per wafer...

Is the 32.72% discrepancy represented entirely by circuitry for buses and power supply of the chips?

It would seem that the transistors are miniaturizing faster than the wiring, and that moreover, the law of large numbers is at play because the wires and other "logic" and power is taking up a higher and higher percentage of the chip's area and volume as compared to individual transistors.


I think that is a good point and also the scaling may not be exactly 40 nm to 30 nm but 40-something to 30-something. It is interesting they can do something this aggressive. Maybe they are trying to match Samsung's pace.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.