Watching electrons move in real time

September 21, 2010

At its most basic level, understanding chemistry means understanding what electrons are doing. Research published in the Journal of Chemical Physics not only maps the movement of electrons in real time but also observes a concerted electron and proton transfer that is quite different from any previously known phase transitions in the model crystal, ammonium sulfate. By extending X-ray powder diffraction into the femtosecond realm, the researchers were able to map the relocation of charges in the ammonium sulfate crystal after they were displaced by photoexcitation.

"Our prototype experiment produces a sort of 'molecular movie' of the atoms in action," says author Michael Woerner of the Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie in Germany. "The time and spatial resolution is now at atomic time and length scales, respectively."

Electron positions were mapped by observing the diffraction of X-ray pulses lasting tens of femtoseconds (quadrillionth of a second). Positions of protons and other nuclei were deduced from the locations of regions of high . Within the crystal, the excited electrons transferred from the sulfate groups to a tight channel within crystal matrix. This channel was stabilized by the transfer of protons from adjacent ammonium groups into the channel. This transfer mechanism had not been previously observed or proposed, and the researchers had expected to see much smaller displacements.

According to Woerner, the technique should be applicable to structural studies of materials ranging from biomolecules to . "We expect that the technique will be applied to many interesting material systems." He says. "In principle, femtosecond X-ray powder diffraction can be applied to any crystalline form of matter. Only the complexity of crystals and the presence of heavy elements, which reduces the penetration depth of X-rays, set some constraints."

Explore further: Ultra-fast X-ray pulses reveal how a solid melts into a liquid

More information: The Article, "Concerted electron and proton transfer in ionic crystals mapped by femtosecond x-ray powder diffraction" by Michael Woerner, Flavio Zamponi, Zunaira Ansari, Jens Dreyer, Benjamin Freyer, Mirabelle Premont-Schwarz, and Thomas Elsaesser is published in the Journal of Chemical Physics. See: jcp.aip.org/jcpsa6/v133/i6/p064509_s1

Related Stories

Unveiling the structure of microcrystals

October 4, 2007

Microcrystals take the form of tiny grains resembling powder, which is extremely difficult to study. For the first time, researchers from the European Synchrotron Radiation Facility (ESRF) and the Centre National de Recherche ...

Powders show their strength

October 9, 2007

[PIC=:left]Growing a single crystal of a protein can be very difficult. Thanks to recent developments, a powder sample may be enough to solve a structure.

Clocking Ultra-fast Electron Bunches

July 30, 2010

(PhysOrg.com) -- Brookhaven researchers have developed a device that acts like a high-tech stopwatch for speedy packs of electrons just trillionths of a second long. This new diagnostic tool could aid in the development of ...

Recommended for you

New device converts DC electric field to terahertz radiation

August 4, 2015

Terahertz radiation, the no-man's land of the electromagnetic spectrum, has long stymied researchers. Optical technologies can finagle light in the shorter-wavelength visible and infrared range, while electromagnetic techniques ...

The resplendent inflexibility of the rainbow

August 4, 2015

Children often ask simple questions that make you wonder if you really understand your subject. An young acquaintance of mine named Collin wondered why the colors of the rainbow were always in the same order—red, orange, ...

For faster battery charging, try a quantum battery?

August 3, 2015

(Phys.org)—Physicists have shown that a quantum battery—basically, a quantum system such as a qubit that stores energy in its quantum states—can theoretically be charged at a faster rate than conventional batteries. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.