Edible gas storage: Porous metal-organic framework made from food-grade natural products

September 1, 2010
Edible gas storage: Porous metal-organic framework made from food-grade natural products

(PhysOrg.com) -- A spoonful of sugar, a pinch of salt, and a splash of alcohol - those are the ingredients used by scientists to generate a new class of robust nanoporous metal-organic frameworks. However, the sugar is not ordinary table sugar, but γ-cyclodextrin, produced from biorenewable cornstarch.

As Fraser Stoddart and a team of scientists from Northwestern University in Evanston (IL, USA), the University of California in Los Angeles (USA), and the University of St. Andrews (UK) report in the journal , this simple recipe could be the basis for a new class of biocompatible porous crystals made of renewable natural products.

Metal-organic frameworks (MOF) are well-ordered, lattice-like crystals. The nodes of the lattices are complexes of (such as copper, zinc, nickel, or cobalt); organic molecules make up the connections between the nodes. Within their pores, the MOFs can store gases such as hydrogen or carbon dioxide. Furthermore, they can be used for separation of materials, for catalysis, or for the targeted transport of drugs in the body. Most previously prepared MOFs are made of building blocks that stem from petrochemicals. Stoddart and his team set themselves a challenge to synthesize MOFs from natural products. “The problem is that natural building blocks are generally not symmetrical,” according to Stoddart, “this lack of symmetry seems to prevent them from crystallizing as highly ordered, porous frameworks.”

γ-Cyclodextrin provided the solution to this problem: it comprises eight asymmetrical glucose residues arranged in ring, which is itself symmetrical. In many countries (for example the USA and Japan), cyclodextrins are approved for use as food additives. The second ingredient in the frameworks is an alkali metal salt. Suitable candidates include ordinary table salt (sodium chloride), the common salt substitute potassium chloride, or potassium benzoate, an approved preservative. These ingredients are dissolved in water and then crystallized by vapor diffusion with an alcohol. It is even possible to use commercially available sources such as grain alcohol. “These ingredients are all substances that can be obtained cheaply, in high quality, and of food-grade purity,” says Stoddart.

The resulting crystals consist of cubes made from six γ-cyclodextrin molecules that are linked in three dimensions by potassium ions. These cubes are perfectly arranged to form a porous framework with easily accessible pores. “This arrangement is a previously unknown one,” says Stoddart. “The pore volume encompasses 54% of the solid body.” Particularly atypical of porous materials is the fact that when dissolved in water, the framework simply dissociates back to its components, which can then be crystallized again with . Says Stoddart: “In this way a degraded framework can easily be recycled or regenerated.”

Explore further: Crystal sponges excel at sopping up CO2

More information: J. Fraser Stoddart, Metal-Organic Frameworks from Edible Natural Products, Angewandte Chemie International Edition, dx.doi.org/10.1002/anie.201002343

Related Stories

Crystal sponges excel at sopping up CO2

December 1, 2005

Since the Industrial Revolution, levels of carbon dioxide---a major contributor to the greenhouse effect---have been on the rise, prompting scientists to search for ways of counteracting the trend. One of the main strategies ...

MTU Paper Among 'Most Accessed' in Advanced Materials

May 11, 2010

(PhysOrg.com) -- A paper by Michigan Tech faculty member Yun Hang Hu has been ranked among the most accessed articles in the prestigious journal Advanced Materials (impact factor 8.191) for the month of March. The article, ...

Recommended for you

New method developed for producing some metals

August 25, 2016

The MIT researchers were trying to develop a new battery, but it didn't work out that way. Instead, thanks to an unexpected finding in their lab tests, what they discovered was a whole new way of producing the metal antimony—and ...

Hitching a ride: Misfiring drugs hit the wrong targets

August 25, 2016

It probably isn't surprising to read that pharmaceutical drugs don't always do what they're supposed to. Adverse side effects are a well-known phenomenon and something many of us will have experienced when taking medicines.

Electron microscopy reveals how vitamin A enters the cell

August 25, 2016

Using a new, lightning-fast camera paired with an electron microscope, Columbia University Medical Center (CUMC) scientists have captured images of one of the smallest proteins in our cells to be "seen" with a microscope.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.