Novel chemistry amplifies ability of nanoparticles to detect rare cells

September 17, 2010

One of the most promising characteristics of nanoparticles as diagnostic agents is the ability to attach to the nanoparticles surface any of a wide variety of targeting molecules that can increase the distinction between malignant and healthy cells, making it easier to spot small numbers of diseased cells within a sea of healthy cells. However, the development of such targeted nanoparticles has been hampered by the need to optimize the chemical methods used to link the targeting molecule to the nanoparticle for each unique combination of the two.

Now, a team of investigators at the Massachusetts General Hospital and Harvard Medical School has developed a chemical methodology that can be used to attach virtually any antibody to a nanoparticle without the need to optimize the reaction conditions. This team, led by Ralph Weissleder, who is a co-principal investigator of the MIT-Harvard Center of Cancer Excellence, published their findings in the journal Nature Nanotechnology.

Using a nanoparticle that is both magnetic and fluorescent and three different known to target tumor-associated surface molecules, Dr. Weissleder and his collaborators applied what they call "bioorthogonal chemistry" to create that bind strongly to the targeted tumor types. They showed that binding took place with the proper using a novel miniaturized detector system developed by the Weissleder team for use in point-of-care applications.

The investigators then compared the binding ability of their targeted nanoparticles with those prepared using one of the now-standard approaches for linking antibodies to nanoparticles. The new process created nanoparticles that stuck to their targeted cells with 10 to 15 times the avidity of those nanoparticles prepared with standard methods. In addition to improving the sensitivity of tumor cell detection using targeted nanoparticles, this new chemistry could also improve strategies for developing targeted drug delivery applications.

This work, which was supported in part by the National Cancer Institute, is detailed in a paper titled, "Bioorthogonal chemistry amplifies nanoparticle binding and enhances sensitivity of cell detection." An abstract of this paper is available at the journal's Web site.

Explore further: Polymer Nanoparticle Kills Tumors

Related Stories

Polymer Nanoparticle Kills Tumors

January 12, 2006

Photodynamic therapy (PDT), which uses a light-sensitive chemical known as a photosensitizer to produce cell-killing “reactive oxygen,” has become an important option for the treatment of esophageal cancer and non-small ...

Targeted Nanoparticles Destroy Prostate Tumors

April 25, 2006

Biodegradable polymer nanoparticles, linked to a protein-binding nucleic acid known as an aptamer and loaded with the anticancer agent docetaxel, can target and kill prostate tumors growing in mice. Using this targeted nanoparticle ...

Self-Assembling Nanoparticles Image Tumor Cells

July 23, 2007

By taking advantage of the full range of ways in which molecules can interact with and bind to one another, a team of investigators at the Carolina Center of Cancer Nanotechnology Excellence has created nanoparticles that ...

New Nanoparticles for Targeting Tumors

March 27, 2008

As a wide variety of nanoparticles continue to demonstrate their ability to improve the delivery of imaging agents and drugs to tumors, nanoparticle researchers have turned their attention to the challenge of systematically ...

Pack 'Em In -- Gold Nanoparticles Improve Gene Regulation

February 23, 2009

Investigators at Northwestern University have found that packing small interfering RNA (siRNA) molecules onto the surface of a gold nanoparticle can protect siRNAs from degradation and increase their ability to regulate genes ...

Recommended for you

New nanomaterial maintains conductivity in 3-D

September 4, 2015

An international team of scientists has developed what may be the first one-step process for making seamless carbon-based nanomaterials that possess superior thermal, electrical and mechanical properties in three dimensions.

Graphene made superconductive by doping with lithium atoms

September 2, 2015

(Phys.org)—A team of researchers from Germany and Canada has found a way to make graphene superconductive—by doping it with lithium atoms. In their paper they have uploaded to the preprint server arXiv, the team describes ...

Making nanowires from protein and DNA

September 3, 2015

The ability to custom design biological materials such as protein and DNA opens up technological possibilities that were unimaginable just a few decades ago. For example, synthetic structures made of DNA could one day be ...

For 2-D boron, it's all about that base

September 2, 2015

Rice University scientists have theoretically determined that the properties of atom-thick sheets of boron depend on where those atoms land.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.