Harmful amyloid interferes with trash pickup for cells in Alzheimer's disease

September 8, 2010
This is a diagram of the barrel shaped structure found in every cell called the proteasome, which chops proteins into pieces that can be resused or discarded. Yang's group showed that amyloid beta is dismantled by the proteasome and in the process outcompetes other proteins. Credit: Yang Lab, UCSD

Chemists at the University of California, San Diego, have identified how a protein that accumulates in the brains of people with Alzheimer's disease interferes with the ability of cells to get rid of debris. They also found a natural mechanism by which this protein, amyloid beta, itself may be discarded.

Plaques of amyloid are a hallmark of the ailment, but no one is sure exactly how they contribute to catastrophic loss of memory and cognition.

Scientists have begun to suspect that amyloid disables a structure called a , which chops up proteins that cells no longer need into pieces that can be reused or discarded. Proteins that have been tagged for destruction pile up in the brains of Alzheimer's patients.

"Basically the trash is put out to the curb, but no one is picking it up," said Jerry Yang, an associate professor of chemistry and biochemistry who led the research effort.

Yang and postdoc Xiaobei Zhao showed that amyloid actually doesn't harm the proteasome. Instead it interferes with the processing of other proteins by competing for access, they report in a forthcoming issue of the journal ACS Chemical Neuroscience.

They found that the proteasome breaks long chains of toxic amyloid into smaller, harmless pieces. And because the proteasome has a greater affinity for amyloid, other proteins build up undigested.

"The fact that the proteasome can hack up amyloid fairly efficiently gives us some insight as to how normal clearance mechanisms actually work," Yang said. "We all have amyloid , and we all get rid of them as well. The proteasome is in every cell."

Scientists believe amyloid plays a central role in the development of and that an imbalance between production and clearance of amyloid leads to build up and the formation of plaques. But they aren't certain how amyloid is normally broken down and removed from the brain.

"Relatively little attention has been paid to how you get rid of it," Yang said. "Minimally, this finding reveals a little bit more about what the amyloid is doing within the cell - how it's altering the function of this very important piece of machinery. If proteasomal dysfunction turns out to be a primary factor in Alzheimer's disease then this will be a key finding."

Explore further: Scientists find new cause of Alzheimer's

Related Stories

Scientists find new cause of Alzheimer's

April 19, 2006

Belgium researchers say they are the first to demonstrate the quantity of amyloid protein in brain cells is a major factor of Alzheimer's disease.

Alzheimer's prevention role discovered for prions

July 3, 2007

A role for prion proteins, the much debated agents of mad cow disease and vCJD, has been identified. It appears that the normal prions produced by the body help to prevent the plaques that build up in the brain to cause Alzheimer’s ...

Researchers find new piece in Alzheimer's puzzle

February 25, 2009

Yale researchers have filled in a missing gap on the molecular road map of Alzheimer's disease. In the Feb. 26 issue of the journal Nature, the Yale team reports that cellular prion proteins trigger the process by which amyloid-beta ...

Amyloid beta protein gets bum rap

November 9, 2009

While too much amyloid beta protein in the brain is linked to the development of Alzheimer's disease, not enough of the protein in healthy brains can cause learning problems and forgetfulness, Saint Louis University scientists ...

Gene linked to aging also linked to Alzheimer's

July 22, 2010

MIT biologists report that they have discovered the first link between the amyloid plaques that form in the brains of Alzheimer's patients and a gene previously implicated in the aging process, SIRT1.

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.