New tool measures strengths of bonds that keep blood clots from washing away

August 19, 2010

( -- New work from the Program in Cellular and Molecular Medicine and the Immune Disease Institute at Children's Hospital Boston shows that the bonds that hold wound-healing platelets in place have a special kind of stickiness that keeps them from being swept away in a rush of pulsing blood.

The lab of Timothy Springer, Latham Family Professor of Pathology at Harvard Medical School, found that bind to arterial walls using a unique double-acting bond that Springer calls a "flex-bond." A little like a kitchen cabinet with a child-safe latch, the bond holds in one mode at low forces, and in a different mode at higher forces. The work opens up the potential for a new understanding of bleeding diseases, such as von Willebrand disease, in which the genes that form platelet bonds have clot-preventing mutations. The work appears in the August 9 issue of Nature.

The body mends scratches and gashes by plugging holes in small with platelets. Platelets, which flow in the , stick together and to the walls of blood vessels to form a patch. "They need to bind to one another and they need to resist the force of blood pushing against them," says Springer.

To form the bonds that hold clots together, two proteins interact: One on the platelet surface, called glycoprotein Ib alpha (GPIb-alpha); and the other, called von Willebrand factor (VWF), which binds both to GPIb-alpha on platelets and to collagen in . VWF protein is mutated in von Willebrand disease. "This receptor-ligand pair needs to resist a lot of force," says Springer. "So we had a hunch that there might be something special about it."

To explore this hunch, Springer's team employed a novel technique, dubbed ReaLiSM (Receptor and Ligand in a Single Molecule). The technique involves the use of a single molecule that links the protein pair together, separately from the pair's normal bond, to measure how force affects the bond's strength.

The researchers first bind the proteins together as the pair would bind in a clot. Then they attach a flexible molecular chain to the ends of the proteins not involved in the biologically meaningful binding. They mimic the force of blood flow on the protein-protein bond by tugging apart the pair using laser-guided, molecular "tweezers" developed by a research team from the University of California, Berkeley. This tugging applies a force similar to that of a fluid threatening to wash away a bound platelet. The change in extension of the flexible chain measures the strength and lifespan of the bond.

"At low force, it was easy to break the bond," says Springer, the same way it is easy to break the magnetic bond holding a cabinet door shut. "But then, as we applied more force, the second state of this bond got engaged." Like a child safety latch, this second bond kicks in at higher forces and lasts longer than the first. Unlike other well-known bonds, such as slip bonds, which weaken with force, and catch bonds, which strengthen with force, "this receptor-ligand pair is really specialized to resist a broad range of forces."

The discovery sheds light on the physics underlying the process of wound-healing. "Anytime you have a better understanding of biophysics, you can treat patients and treat diseases better," says Springer.

Springer's lab will follow up on this work by exploring how this bond behaves in patients with von Willebrand disease. By using his new measurement technique to test clinical samples that contain mutated forms of the two proteins, Springer hopes to better understand how these mutations give rise to bleeding disorders.

The work also opens the door to examining other receptor-ligand pairs in the body to see how they react to force. "There are forces everywhere in the body. In the intestine, in muscles and tendons, in the skin, there are many, many adhesion molecules that keep your body together that have to resist force."

Explore further: Using a light touch to measure protein bonds

More information: "A Mechanically Stabilized Receptor-Ligand Flex-Bond Important in the Vasculature" Jongseong Kim, Cheng-Zhong Zhang, Xiaohui Zhang and Timothy A. Springer.

Related Stories

Using a light touch to measure protein bonds

June 30, 2008

MIT researchers have developed a novel technique to measure the strength of the bonds between two protein molecules important in cell machinery: Gently tugging them apart with light beams.

New molecular force probe stretches molecules, atom by atom

March 29, 2009

Chemists at the University of Illinois have created a simple and inexpensive molecular technique that replaces an expensive atomic force microscope for studying what happens to small molecules when they are stretched or compressed.

Researchers solve 'bloodcurdling' mystery

June 4, 2009

By applying cutting-edge techniques in single-molecule manipulation, researchers at Harvard University have uncovered a fundamental feedback mechanism that the body uses to regulate the clotting of blood. The finding, which ...

Muscular protein bond -- strongest yet found in nature

July 20, 2009

A research collaboration between Munich-based biophysicists and a structural biologist in Hamburg (Germany) is helping to explain why our muscles, and those of other animals, don't simply fall apart under stress. Their findings ...

Targeting the molecular 'grip' of thrombosis

September 7, 2009

( -- New research at The University of Nottingham could help prevent the harmful blood clots associated with heart disease and stroke, the single greatest cause of disease-related death worldwide.

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.