Buried silver nanoparticles improve organic transistors

August 10, 2010

Out of sight is not out of mind for a group of Hong Kong researchers who have demonstrated that burying a layer of silver nanoparticles improves the performance of their organic electronic devices without requiring complex processing. Their findings in a report published in the journal Applied Physics Letters, which is published by the American Institute of Physics (AIP).

A team led by Professors Paddy Chan and Dennis Leung of the Hong Kong Polytechnic University has shown that a simple layer of placed between two layers of the organic semiconductor pentacene improves performance just as much as painstakingly placing nanoparticles atop a tiny floating gate region.

Because certain metal nanoparticles trap electric charges very effectively, they are becoming a popular additive for enhancing transistor performance and producing thinner transistors. Sandwiching a layer of nanoparticles is much more compatible with the low-cost, continuous roll-to-roll fabrication techniques used to make organic electronics than the more intricate patterning required to put material just in the transistor gate area.

Moreover, Chan's group showed that the thickness of the nanoparticle layer changes the device performance in predictable ways that can be used to optimize transistor performance to meet application requirements.

Transistors made with a 1-nanometer nanoparticle layer, for example, have stable memory that lasts only about three hours, which would be suitable for memory buffers. Transistors having a 5-nanometer-thick layer are more conventional and retain their charge for a much longer time.

"We believe that has a very high potential for use in next-generation -- such as touchscreens and electronic paper -- where their flexibility and low-cost are most important," said Dr. Sumei Wang, a postdoctoral research fellow of the team.

Explore further: C60 increases gain in organic-metal-semiconductor transistors

More information: "Nonvolatile organic transistor-memory devices using various thicknesses of silver nanoparticle layers" , Paddy K. L. Chan, Sumei Wang and Chi Wah Leung, apl.aip.org/applab/v97/i2/p023511_s1

Related Stories

Organic flash memory developed

December 17, 2009

(PhysOrg.com) -- Researchers at the University of Tokyo have developed a non-volatile memory that has the same basic structure as a flash memory but is made from cheap, flexible, organic materials.

Recommended for you

Mathematicians identify limits to heat flow at the nanoscale

November 24, 2015

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can ...

New sensor sends electronic signal when estrogen is detected

November 24, 2015

Estrogen is a tiny molecule, but it can have big effects on humans and other animals. Estrogen is one of the main hormones that regulates the female reproductive system - it can be monitored to track human fertility and is ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.