Robot with frog egg smell sensor (w/ Video)

Aug 26, 2010 by Lin Edwards report
Robot with frog egg smell sensor (w/ Video)
This robot shakes its head when it gets a whiff of certain molecules. Credit: PNAS.

(PhysOrg.com) -- Researchers from the University of Tokyo have invented a novel means of improving a robot's sense of smell, by using inexpensive olfactory sensors containing frog eggs.

The researchers, Nobuo Misawaa, Hidefumi Mitsunob, Ryohei Kanzakic, and Shoji Takeuchi, used eggs from the African Clawed Frog (Xenopus laevis) to build their sensors. Eggs from this frog have been used in many laboratories to express olfactory receptors, and their mechanisms are well understood. This is the first time frog eggs have been used in a robot.

The immature eggs were harvested and then injected with DNA from fruit flies, silk moths and diamond back moths, which stimulated the eggs to produce the olfactory sensors of these insects. Takeuchi, a bioengineer at the University, said the eggs basically acted as a platform for the parts of the insect DNA that have been shown in the past to be responsible for detecting gases, odors, and pheromones.

This video is not supported by your browser at this time.
A robot's head shaking that has been triggered by an olfactory stimulus. Credit: PNAS.

The genetically modified eggs were placed between a pair of electrodes to form a detector, which measures the current created when the receptors on the egg bind with the odor molecules. The frog egg detectors are far more sensitive and accurate than other biological smell receptors that use the physical vibrations of quartz rods that vibrate when target odor molecules bind to them. These detectors tend to give false positives when other molecules with similar molecular weights to the target molecules bind to them.

The frog egg smell detectors were demonstrated in a robotic mannequin that shakes its head when it comes into contact with moth pheromones. It is capable of detecting solutions containing only a few parts per billion of the target molecule, and can distinguish between molecules with only slight differences such as -OH, -CHO and -C=O groups.

The aim of future research is to use frog eggs to detect gases such as carbon dioxide. Takeuchi explained that the mosquito can detect people from the carbon dioxide they breathe out. This means the mosquito must have carbon dioxide receptors, and so if DNA is extracted from the mosquito and used to genetically modify the , the eggs will also be able to detect the gas.

Takeuchi said aother possible future application would be to create detectors for the ketone produced by people with diabetes or for aldehydes or other allergens in foods.

The paper was published in the Proceedings of the National Academy of Sciences.

Explore further: Researchers identify less-invasive method for kidney diagnostics

More information: Nobuo Misawa et al.: Highly sensitive and selective odorant sensor using living cells expressing insect olfactory receptors, Proceedings of the National Academy of Sciences, Published online before print August 23, 2010, doi:10.1073/pnas.1004334107

Related Stories

Humans, flies smell alike, neurobiologists find

Mar 26, 2007

The nose knows – whether it’s on a fruit fly or a human. And while it would seem that how a fruit fly judges odors should differ from how a human smells, new research from Rockefeller University finds that at the neurobiological ...

Recommended for you

Research center develops single-cell analyzer

8 hours ago

Researchers at Missouri University of Science and Technology have developed a probe capable of detecting signs of disease or environmental change inside a single human cell.

Devices designed to identify pathogens in food

May 27, 2015

Researchers at the National Polytechnic Institute (IPN) in Mexico have developed a technology capable of identifying pathogens in food and beverages. This technique could work in the restaurant industry as ...

Biosensor may improve clinical diagnosis of influenza A

May 27, 2015

Sensors based on special sound waves known as surface acoustic waves (SAWs) are capable of detecting tiny amounts of antigens of Influenza A viruses. Developed by A*STAR researchers, the biosensors have the ...

New chip makes testing for antibiotic-resistant bacteria faster, easier

May 26, 2015

We live in fear of 'superbugs': infectious bacteria that don't respond to treatment by antibiotics, and can turn a routine hospital stay into a nightmare. A 2015 Health Canada report estimates that superbugs have already cost Canadians $1 billion, and are a "serious and growing issue." Each year two million people in the U.S. contract antibiotic-re ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.