Paper highlight: Nanoscopic patterned materials with tunable dimensions

August 19, 2010
Artist's rendition of nanoscopic patterned materials with tunable dimensions via atomic layer deposition on block copolymers.

A collaboration between CNM's Electronic & Magnetic Materials & Devices Group and Argonne's Energy Systems Division has led to an entirely new way to fabricate both two- and three-dimensional functional nanomaterials.

Their approach combines block copolymer self-assembly with the self-limiting and selective process of atomic layer deposition.

By choosing suitable polymer and deposition precursor chemistries, highly selective deposition can be achieved in which the inorganic material grows within only one of the polymer blocks.

Through rational design of block copolymers and selection of deposition parameters, patterned designer materials with controlled size, spacing, symmetry, and composition can be synthesized.

Potential applications for this method extend to virtually all technologies in which periodic nanomaterial structures are desirable.

Explore further: Nano Layer Deposition; Unique Thin Film Deposition Technology Surpasses Atomic Layer Deposition in Flexibility

More information: Q. Peng, Y.-C. Tseng, S. B. Darling, and J. W. Elam, Advanced Materials, in press.

Related Stories

New Research on Nanodiamond Materials

September 9, 2008

In a recent special issue of Chemical Vapor Deposition devoted to nanodiamonds, editors Amanda Barnard and Oliver Williams note that "the diversity of nanocarbon structures and allotropes has led to a plethora of growth techniques ...

Researchers find new route to nano self-assembly

October 22, 2009

(PhysOrg.com) -- If the promise of nanotechnology is to be fulfilled, nanoparticles will have to be able to make something of themselves. An important advance towards this goal has been achieved by researchers with the U.S. ...

Recommended for you

Graphene under pressure

August 25, 2016

Small balloons made from one-atom-thick material graphene can withstand enormous pressures, much higher than those at the bottom of the deepest ocean, scientists at the University of Manchester report.

Neuromorphic computing mimics important brain feature

August 18, 2016

(Phys.org)—When you hear a sound, only some of the neurons in the auditory cortex of your brain are activated. This is because every auditory neuron is tuned to a certain range of sound, so that each neuron is more sensitive ...

'Artificial atom' created in graphene

August 22, 2016

In a tiny quantum prison, electrons behave quite differently as compared to their counterparts in free space. They can only occupy discrete energy levels, much like the electrons in an atom - for this reason, such electron ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.