Inherited brain activity predicts childhood risk for anxiety

August 11, 2010

A new study focused on anxiety and brain activity pinpoints the brain regions that are relevant to developing childhood anxiety. The findings, published in the Aug. 12 edition of the journal Nature, may lead to new strategies for early detection and treatment of at-risk children.

" with anxious temperaments suffer from extreme shyness, persistent worry and increased bodily responses to stress," says Ned H. Kalin, chair of psychiatry at the University of Wisconsin-Madison School of Medicine and Public Health, who led the research. "It has long been known that these children are at increased risk of developing anxiety, depression, and associated substance abuse disorders."

The new study by Kalin and colleagues demonstrated that increased in the amygdala and anterior hippocampus could predict anxious temperament in young primates.

"We believe that young children who have higher activity in these are more likely to develop anxiety and depression as adolescents and adults and are also more likely to develop drug and alcohol problems in an attempt to treat their distress," says Kalin.

Previous research led by Kalin established that anxious young monkeys are similar to children who are temperamentally anxious. In the current study, researchers examined the extent to which genetic and environmental factors influence activity in the anxiety-related that may make children vulnerable.

In the largest imaging study of nonhuman primates, the researchers at UW-Madison scanned the brains of 238 young rhesus monkeys, all of which belong to the same extended family. The monkeys underwent a positron (PET) scan, which in humans is used to understand regional brain function by measuring the brain's use of glucose.

Key findings of the study include:

  • Young rhesus monkeys from a large related family showed a clear pattern of inherited anxious temperament.
  • Monkeys with anxious temperaments had higher activity in the central nucleus of the amygdala and the anterior hippocampus. In addition, researchers could predict an individual's degree of anxious temperament by its brain activity.
  • Genes and environmental factors affected activity in the amygdala and hippocampus in different ways, providing a brain-based understanding of how nature and nurture might interact to determine an individual's vulnerability to developing common psychiatric disorders.

First author Jonathan Oler, associate scientist at the UW-Madison Department of Psychiatry, says the findings were a surprise.

"We expected that all of the brain regions involved in anxious temperament would be similarly affected by genes and environment, but found that activity in the anterior hippocampus was more heritable than in the amygdala," says Oler.

The new discovery may ultimately lead to new ways to detect anxiety in children, says Drew Fox, a graduate student working with Kalin and a co-author on the study.

"Markers of familial risk for anxiety could be identified by understanding alterations in specific genes that influence hippocampal function," says Fox.

The study suggests that there is a tremendous opportunity to modify the environment to prevent children from developing full-blown anxiety.

"My feeling is that the earlier we intervene with children, the more likely they will be to lead a happy life in which they aren't as controlled by anxiety and depression," says Kalin, who is also director of the UW-Madison HealthEmotions Research Institute. "We think we can train vulnerable kids to settle their brains down."

Under Kalin's leadership, researchers at the HealthEmotions Research Institute are translating these findings to humans by measuring amygdala and hippocampal function in young children who have early signs of and depression.

Kalin emphasizes that the research could not have been accomplished without the important contributions of collaborators including Steve Shelton, Richie Davidson and Terry Oakes of UW-Madison; Tom Dyer, Wendy Shelledy and John Blangero of the Southwest Foundation; and Jeff Rogers of Baylor University.

Explore further: Gene variants may increase risk of anxiety disorders

Related Stories

Gene variants may increase risk of anxiety disorders

March 3, 2008

Massachusetts General Hospital (MGH) researchers – in collaboration with scientists at the University of California at San Diego and Yale University – have discovered perhaps the strongest evidence yet linking variation ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Cow embryos reveal new type of chromosome chimera

May 27, 2016

I've often wondered what happens between the time an egg is fertilized and the time the ball of cells that it becomes nestles into the uterine lining. It's a period that we know very little about, a black box of developmental ...

Shaving time to test antidotes for nerve agents

February 29, 2016

Imagine you wanted to know how much energy it took to bike up a mountain, but couldn't finish the ride to the peak yourself. So, to get the total energy required, you and a team of friends strap energy meters to your bikes ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.