LEDs illuminate eye for ocular disease screening

Aug 31, 2010

A new imaging system using six different wavelengths to illuminate the interior of the eyeball (ocular fundus) may pave the way for doctors to easily screen patients for common diseases of the eye, such as age-related macular degeneration and diabetic retinopathy. The system is described in the journal Review of Scientific Instruments.

Currently, when optometrists and ophthalmogists visualize the ocular fundus, they typically take snapshot images of the in two or three wavelengths (red, green and blue), which can reveal some visually-apparent abnormalities. But an added dimension made possible with the imaging system described by Nicholas L. Everdell of University College London allows doctors to distinguish between the different light absorbing characteristics of biological molecules called chromophores.

According to the paper's coauthor Iain Styles of the University of Birmingham, five of these light-absorbing compounds are prevalent in the eye: retinal hemoglobins, choroidal hemoglobins, choroidal melanin, RPE ( epithelium) melanin, and macular pigment. In a separate paper (Medical Image Analysis 10 (2006) 578), Styles said that each of these has been shown to give rise to distinct variations in tissue coloration that can be discriminated in multispectral images.

In the new work, Everdell and Styles describe a device combining a high-sensitivity CCD camera with wavelength-specific illumination from LEDs (light-emitting diodes) that provides multispectral images of the ocular fundus. The multispectral images, explains Styles, are affected differently by the pigments present in the eye, and through a sophisticated algorithm they can be used to generate a pixel-by-pixel "parametric map" of the distribution of substances in the eye. Such maps may allow primary care clinicians to screen for and identify pathologies at a much earlier stage of development than other imaging modalities.

An advantage the new system offers over other multispectral systems is its speed. It can acquire a sequence of multispectral images at a fast enough rate (0. 5 seconds) to reduce image shifts caused by natural eye movements. In contrast with snapshot systems, the system's images retain full spatial resolution. Also, the system uses only the specific wavebands that are required for the subsequent analysis, minimizing the total light exposure of the subject, ensuring patient safety and improving image quality.

"The long term goal," Everdell said, "is to develop a system for chromophore quantification that is an integral part of the standard fundus camera, and therefore could be used routinely by both optometrists and opthalmologists."

Explore further: Used MRI magnets get a second chance at life in high-energy physics experiments

More information: The article, "Multispectral Imaging of the Ocular Fundus using LED Illumination" by Nicholas Everdell, Iain B. Styles, Antonio Calcagni, Jonathan Gibson, Jeremy C. Hebden, and Ela Claridge will appear in the journal Review of Scientific Instruments. See: rsi.aip.org/

Related Stories

Rapid, high-resolution 3-D images of the retina

May 02, 2007

In efforts that may improve diagnoses of many eye diseases, researchers will introduce a new type of laser for providing high-resolution 3-D images of the retina, the part of the eye that converts light to electrical signals ...

MIT team takes high-res, 3-D images of eye

Apr 30, 2007

In work that could improve diagnoses of many eye diseases, MIT researchers have developed a new type of laser for taking high-resolution, 3-D images of the retina, the part of the eye that converts light to ...

Investigators take a fresh look at crime

Jan 24, 2007

Space scientists built advanced imaging tools to investigate the origins of the planets. Now they're working with forensic scientists to see if their tools can help investigate crime.

Recommended for you

SLAC gears up for dark matter hunt with LUX-ZEPLIN

May 21, 2015

Researchers have come a step closer to building one of the world's best dark matter detectors: The U.S. Department of Energy (DOE) recently signed off on the conceptual design of the proposed LUX-ZEPLIN (LZ) ...

First images of LHC collisions at 13 TeV

May 21, 2015

Last night, protons collided in the Large Hadron Collider (LHC) at the record-breaking energy of 13 TeV for the first time. These test collisions were to set up systems that protect the machine and detectors ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.