Fat serves as cells' built-in pH sensor: research

August 26, 2010

A specific type of fat present in cell membranes also serves as a cellular pH sensor, a team of University of British Columbia researchers has discovered.

pH is a measure of acidity or basicity. Cells need to maintain pH in order to perform their normal . However, the mechanisms by which cells monitor pH were unknown.

"Scientists have known that specific proteins can detect changes in pH under certain circumstances," says Chris Loewen, an assistant professor in the Department of Cellular and Physiological Sciences in the UBC Faculty of Medicine and a member of the UBC Life Sciences Institute. "But we found that a specific phospholipid, or fat, called phosphatidic acid, which is present in all cells, is actually responsible for detecting pH."

The findings are published today in the journal Science.

"Using brewer's yeast as a model, we found that, when deprived of nutrients, the resulting decrease in cellular pH affected the chemical state of phosphatidic acid. This in turn altered and ," says Dr. Loewen, who is also a member of the Brain Research Centre at UBC and Vancouver Coastal Health Research Institute.

The new findings have important implications for understanding human metabolism and disease because lipid structure and function are very similar amongst all organisms. Further work is needed to explore the implications of this discovery for other areas, such as tumour progression - because both phosphatidic acid and pH play important roles in this process - and brain research - because dynamically change their cellular pH, implying they, too, use a pH sensor.

Explore further: New technique developed for tracking cells in the body

Related Stories

New technique developed for tracking cells in the body

March 20, 2007

Scientists' inability to follow the whereabouts of cells injected into the human body has long been a major drawback in developing effective medical therapies. Now, researchers at Johns Hopkins have developed a promising ...

Lab characterizes niche control of stem cell function

January 11, 2008

The Stowers Institute’s Xie Lab has published findings that begin to characterize the poorly understood interaction among stem cells within their cellular microenvironment, called a niche.

Cellular stress causes fatty liver disease in mice

December 8, 2008

A University of Iowa researcher and colleagues at the University of Michigan have discovered a direct link between disruption of a critical cellular housekeeping process and fatty liver disease, a condition that causes fat ...

Cells in the land of milk and honey

August 10, 2010

Researchers at the Institute of Biochemistry at ETH Zurich have discovered that cells measure their energy reserves with the aid of a sensor, which determines whether they are growing and dividing. This could be a general ...

Recommended for you

Parasitized bees are self-medicating in the wild, study finds

September 1, 2015

Bumblebees infected with a common intestinal parasite are drawn to flowers whose nectar and pollen have a medicinal effect, a Dartmouth-led study shows. The findings suggest that plant chemistry could help combat the decline ...

Orangutan females prefer dominant, cheek-padded males

September 1, 2015

Unlike most mammals, mature male orangutans exhibit different facial characteristics: some develop large "cheek pads" on their faces; other males do not. A team of researchers studied the difference in reproductive success ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.