Engineering researchers simplify process to make world's tiniest wires

July 21, 2010 by Aaron Hoover
Clumps of extremely tiny nanowires in this image are captured with the aid of an electron microscope. The clumping pattern, which occurs as a result of surface tension during the manufacturing process, limits the usefulness of the wires, which are viewed as a likely core element of more powerful microelectronics, solar cells, batteries and medical tools.

(PhysOrg.com) -- Surface tension isn't a very powerful force, but it matters for small things — water bugs, paint, and, it turns out, nanowires.

Nanowires are so tiny that a human hair would dwarf them — some have diameters 150 billionths of a meter. Because of their small size, surface tension that occurs during the manufacturing process pulls them together, limiting their usefulness. This is a problem because the wires are seen as a potential core element of new and more powerful , solar cells, batteries and medical tools.

But in a paper in the journal ACS Applied Materials & Interfaces now online, a University of Florida engineering researcher says he has found an inexpensive solution.

Kirk Ziegler, an assistant professor of chemical engineering, said are most often made today with a process that involves the immersion of the wires.

When complete, each wire is supposed to poke up right next to the other from a flat surface, like bristles on a Lilliputian toothbrush. But Ziegler said the wires are so tiny and so flexible that surface tension clumps them up when dried.

Manufacturers use extremely high pressure to reduce the surface tension, but Ziegler said that process is difficult, expensive and not conducive to large-scale production.

Ziegler and Justin Hill, who will graduate from UF with a doctorate in chemical engineering this summer, realized that they needed to introduce a force that counteracted that of the surface tension. They came up with a process simple enough to be achievable with a nine-volt battery. The researchers apply an electrical charge to the nanostructures during the , charging each tiny wire and making it repel its neighbor.

"As the two nanowires pull toward each other because of the , the like charges at the tips act to push them apart," Ziegler said. "The aim is to get a net zero force on the structure, so the nanowires stand straight."

Tests of microscope-slide-sized surfaces, each containing trillions of nanowires, showed that the procedure effectively prevents clumping, Ziegler said.

In this image captured with the aid of an electron microscope, nanowires stand straight up as a result of a new process developed by University of Florida chemical engineering researchers. The engineers apply an electrical charge to the nanostructure during the manufacturing process, charging each wire and making it repel its neighbor, counteracting the opposite force induced by the surface tension. The researchers say the process is inexpensive and simple, a step toward making the nanowires a more common constituent of electronics, medical devices and solar cells.

Nanowires have not found wide commercial applications to date, but Ziegler said that as engineers learn how to make and manipulate them, they could underpin far more efficient and batteries because they provide more surface area and better electrical properties.

"Being able to pack in a higher density of nanowires gives you a much higher surface area, so you start to generate higher energy density," he said.

Ziegler said that biomedical engineers are also interested in using the wires to help deliver drugs to individual cells, or to hinder or encourage individual cell growth. The University of Florida has applied for a patent on the process, he added.

Explore further: New "Molecular Wires" Nanotechnology to Replace Silicon

Related Stories

New "Molecular Wires" Nanotechnology to Replace Silicon

August 23, 2004

Scientists from the U.S. Department of Energy's Brookhaven National Laboratory and the University of Florida have uncovered information that may help "molecular wires" replace silicon in micro-electronic circuits and/or components ...

Chemists measure copper levels in zinc oxide nanowires

February 19, 2008

Chemists at the National Institute of Standards and Technology have been the first to measure significant amounts of copper incorporated into zinc oxide (ZnO) nanowires during fabrication. The issue is important because copper ...

Easy assembly of electronic biological chips

January 15, 2009

(PhysOrg.com) -- A handheld, ultra-portable device that can recognize and immediately report on a wide variety of environmental or medical compounds may eventually be possible, using a method that incorporates a mixture of ...

Copper Nanowires Enable Bendable Displays, Solar Cells

June 1, 2010

(PhysOrg.com) -- A team of Duke University chemists has perfected a simple way to make tiny copper nanowires in quantity. The cheap conductors are small enough to be transparent, making them ideal for thin-film solar cells, ...

Recommended for you

Graphene is strong, but is it tough?

February 4, 2016

Graphene, a material consisting of a single layer of carbon atoms, has been touted as the strongest material known to exist, 200 times stronger than steel, lighter than paper, and with extraordinary mechanical and electrical ...

A new way to make higher quality bilayer graphene

February 8, 2016

(Phys.org)—A team of researchers with members from institutions in the U.S., Korea and China has developed a new way to make bilayer graphene that is higher in quality than that produced through any other known process. ...

Nanoparticle ink could combat counterfeiting

February 5, 2016

(Phys.org)—Researchers have demonstrated that transparent ink containing gold, silver, and magnetic nanoparticles can be easily screen-printed onto various types of paper, with the nanoparticles being so small that they ...

Tiniest spin devices becoming more stable

February 3, 2016

(Phys.org)—In 2011, the research group of Roland Wiesendanger, Physics Professor at the University of Hamburg in Germany, fabricated a spin-based logic device using the spins of single atoms, a feat that represents the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.