Adaptation in mole blood aids tunnelling

Jul 19, 2010

'Super hemoglobin' allows moles to thrive underground. Researchers writing in the open access journal BMC Evolutionary Biology have made the first identification of an adaptation in the blood of Eastern moles which allows more efficient transport of carbon dioxide, facilitating the moles' burrowing behavior.

Kevin Campbell from the University of Manitoba, Canada, worked with a team of researchers to study the blood of three underground species of North American moles. He said, "Unlike terrestrial animals, moles are routinely exposed to conditions of low oxygen and high . Burrowing is difficult in itself, but is made even more challenging by the requirement to re-breathe their own expired air. We've found that one species, the Eastern mole, appears to be uniquely adapted to underground life through the evolution of a special kind of hemoglobin in their blood that greatly enhances its carbon dioxide carrying capacity".

The researchers determined the genetic code for different hemoglobin components in the three mole species and measured how well these components bind to their usual target molecules. They also tested the oxygen binding properties of whole blood samples. Speaking about the results, Campbell said, "It has been speculated that the main mechanism for the moles adaptation to subterranean life revolves around the molecule 2,3-diphosphoglycerate, or DPG, that modulates hemoglobin's oxygen binding inside the . However, in the of the eastern , the key sites which would normally bind DPG are deleted, thereby allowing for the binding of additional carbon dioxide molecules".

Adds co-author Roy Weber, University of Aarhus, Denmark, "It would be interesting to see if the hemoglobins of other burrowing species exhibit comparable specializations". The team envisions that this line of research could lead to the development of improved artificial human blood substitutes with specially engineered properties.

Explore further: Researchers show how our sense of smell evolved, including in cave men

More information: Molecular basis of a novel adaptation to hypoxic-hypercapnia in a strictly fossorial mole, Kevin L Campbell, Jay F Storz, Anthony V Signore, Hideaki Moriyama, Kenneth C Catania, Alexander P Payson, Joseph Bonaventura, Joerg Stetefeld and Roy E Weber, BMC Evolutionary Biology 2010, 10:214, doi:10.1186/1471-2148-10-214

Related Stories

Diagnosing skin cancers with light, not scalpels

Jun 04, 2007

In an early step toward nonsurgical screening for malignant skin cancers, Duke University chemists have demonstrated a laser-based system that can capture three-dimensional images of the chemical and structural changes under ...

Better life support for artificial liver cells

Aug 23, 2007

Researchers at Ohio State University are developing technology for keeping liver cells alive and functioning normally inside bioartificial liver-assist devices (BLADs).

Naked mole rats may hold clues to surviving stroke

Nov 30, 2009

Blind, nearly hairless, and looking something like toothy, plump, pink fingers, naked mole rats may rank among nature's most maligned creatures, but their unusual physiology endears them to scientists.

Classifying molar pregnancy

Oct 21, 2009

Researchers from The Johns Hopkins Medical Institutions have used short tandem repeat (STR) genotyping and p57 immunohistochemistry to distinguish hydatidiform moles. The related report by Murphy et al "Molecular Genotyping ...

Blood Enzyme Could Help Realize Clean Coal

Dec 03, 2009

(PhysOrg.com) -- An enzyme in our blood that enables our lungs to exhale carbon dioxide could be the key to isolating carbon dioxide emissions from coal plants in order to store them safely underground. A ...

Recommended for you

Researchers discover new mechanism of DNA repair

Jul 03, 2015

The DNA molecule is chemically unstable giving rise to DNA lesions of different nature. That is why DNA damage detection, signaling and repair, collectively known as the DNA damage response, are needed.

The math of shark skin

Jul 03, 2015

"Sharks are almost perfectly evolved animals. We can learn a lot from studying them," says Emory mathematician Alessandro Veneziani.

Cuban, US scientists bond over big sharks

Jul 03, 2015

Somewhere in the North Atlantic right now, a longfin mako shark—a cousin of the storied great white—is cruising around, oblivious to the yellow satellite tag on its dorsal fin.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.