Middle school students co-author research on enzyme for activating promising disease-fighters

July 29, 2010
These computerized images show the innermost structure of a key bacterial enzyme that helps activate certain antibiotics and anti-cancer agents. Credit: American Chemical Society

Grown-ups aren't the only ones making exciting scientific discoveries these days. Two middle school students from Wisconsin joined a team of scientists who are reporting the first glimpse of the innermost structure of a key bacterial enzyme. It helps activate certain antibiotics and anti-cancer agents so that those substances do their job.

Their study appears in ACS' weekly journal Biochemistry. The student co-authors of the study are from Edgewood Campus Middle School in Madison and participated in Project CRYSTAL, a special program that provides middle school students with hands-on laboratory experience.

In the report, study leader Hazel Holden and colleagues note intense scientific interest in a chemical process called methylation, which increases the activity of DNA, proteins, and other substances in the body by transferring (CH3) groups to them. Special enzymes called methyltransferases make methylation possible, and these proteins are very important in a myriad of key biological processes.

Holden and colleagues studied a bacterial involved in the production of tetronitrose, a component of the promising anti-cancer agent, tetrocarcin, and the antibiotic kijanimicin. The methyltransferase seems to play a key role in activating these disease-fighters. The scientists identified the 3D structure of this methyltransferase, a key step in determining how it works and how it might be modified for potential use in medicine.

Explore further: Core tenets of the 'histone code' are universal

More information: "Molecular Architecture of a C-3'-Methyltransferase Involved in the Biosynthesis of D-Tetronitrose, Biochemistry.

Related Stories

Core tenets of the 'histone code' are universal

September 6, 2007

In one of biology’s most impressive engineering feats, specialized proteins called histones package some six-and-a-half feet of human DNA into a nucleus that averages just five microns in diameter.

Researchers discover RNA repair system in bacteria

October 12, 2009

In new papers appearing this month in Science and the Proceedings of the National Academy of Sciences, University of Illinois biochemistry professor Raven H. Huang and his colleagues describe the first RNA repair system to ...

Fatty acid to enhance anticancer drug

May 7, 2010

Scientists of the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) have discovered that bioavailability and efficacy of the blood cancer drug azacytidine increase when the substance is coupled to a fatty ...

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.